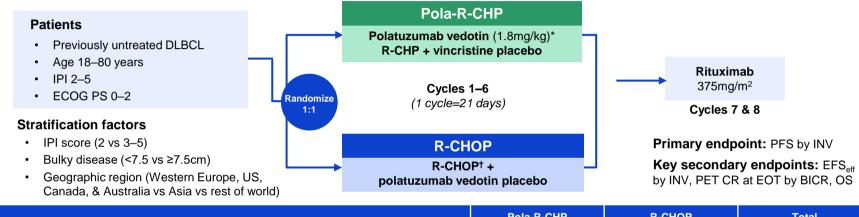
Five-Year Analysis of an Asia Subpopulation with Previously Untreated DLBCL Confirms Pola-R-CHP Benefit on Outcomes: The POLARIX Study


Yuqin Song¹, Hervé Tilly², Shinya Rai³, Huilai Zhang⁴, Jie Jin⁵, Hideki Goto⁶, Yoshiaki Ogawa⁷, Ho-Jin Shin⁸, Won Seog Kim⁹, Junning Cao¹⁰, Hyeon Seok Eom¹¹, Dok Hyun Yoon¹², Xavier Cheng-Hong Tsai¹³, Jyh-Pyng Gau¹⁴, Dai Maruyama¹⁵, Liling Zhang¹⁶, Yongping Song¹⁷, Yu Yang¹⁸, Wei Li¹⁹, He Huang²⁰, Hiroshi Okamura²¹, Gilles Salles²², Laurie H. Sehn²³, Lilian Bu²⁴, Yanwen Jiang²⁵, Saibah Chohan²⁶, Matthew Sugidono²⁵, Connie Lee Batlevi²⁵, Mark Yan²⁶, Claire Xu²⁴, Stacey Huang²⁴, Wenjin Li²⁷, Ye Zhang²⁴, Jun Zhu¹, Koji Izutsu²⁸

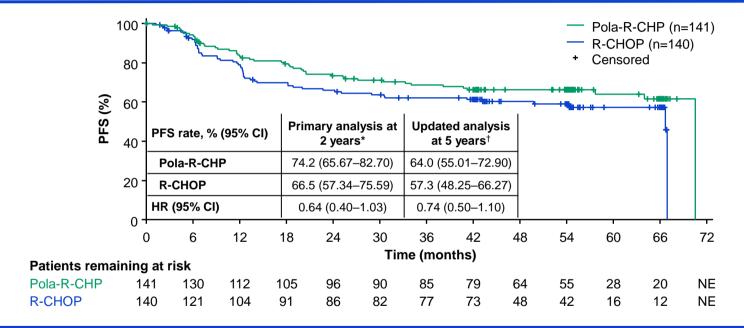
¹Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China; ²Centre Henri Becquerel and University of Rouen, Rouen, France; ³Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan; ⁴Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Stherist Affiliated Hospital of College of Medicine, Zhejiang University, Zhejiang, China; ⁵The First Affiliated Hospital of College of Medicine, Separation of Hematology and Oncology, Tokai University School of Medicine, Kanagawa, Japan; ⁸Pusan National University Hospital, Busan, Republic of Korea; ⁹Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea; ¹⁰Fudan University Shanghai Cancer Center, Shanghai, China; ¹¹Center for Hematologic Malignancy, National Cancer Center, Goyang, Republic of Korea; ¹²Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; ¹³National Taiwan University Hospital, Taipei, Taiwan, ¹⁴Taipei Veterans General Hospital, Taipei, Taiwan; ¹⁵Department of Hematology Oncology, Cancer Hospital Affiliated to Zhengzhou University, Japan; ¹⁶Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; ¹⁷Department of Hematology, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, China; ¹⁸Department of Hematology, Cancer Hospital Hospital, Fuzhou, China; ¹⁹Department of Hematology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan; ²⁰Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; ²¹Hematology, Graduate School of Medicine, Osaka Metropolitan Unive

Disclosures

- Yuqin Song, M.D., PhD
- > Consultancy/advisory board participation (past 12 months):
- AbbVie, BeiGene, AstraZeneca, MSD, Johnson & Johnson, Roche
- > Research support (managed by institution):
- Janssen, BeiGene, MSD, Takeda

POLARIX study design

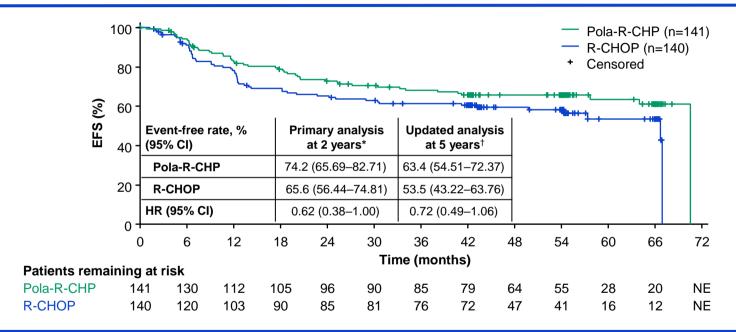
		Pola-R-CHP	R-CHOP	Total
	Intent-to-Treat [§]	141	140	281
Asia Subpopulation [‡]	Safety evaluable¶	140	139	279
	Median PFS follow-up (months)	54.4	54.1	54.1
	Median OS follow-up (months)	60.3	59.8	60.0


*IV on Day 1; †R-CHOP: IV rituximab 375mg/m², cyclophosphamide 750mg/m², doxorubicin 50mg/m², and vincristine 1.4mg/m² (max. 2mg) on Day 1, plus oral prednisone 100mg once daily on Days 1–5; †The Asia subpopulation includes 281 patients enrolled from Asian countries/regions (mainland China, Japan, South Korea, and Taiwan) during the global phase (160 patients) and patients from the China extension cohort (121 patients); §Asian randomized population; ¶Asian treated population.

BICR, blinded independent central review; CR, complete response; DLBCL, diffuse large B-cell lymphoma; ECOG PS, Eastern Cooperative Oncology Group performance status; EFS_{eff}, event-free survival (efficacy); EOT, end of treatment; INV, investigator; IPI, International Prognostic Index; OS, overall survival; PET, positron emission tomography; PFS, progression-free survival; Pola-R-CHP, polatuzumab vedotin, rituximab, cyclophosphamide, doxorubicin and prednisolone; R-CHOP, rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone.

Patient baseline characteristics of Asia subpopulation

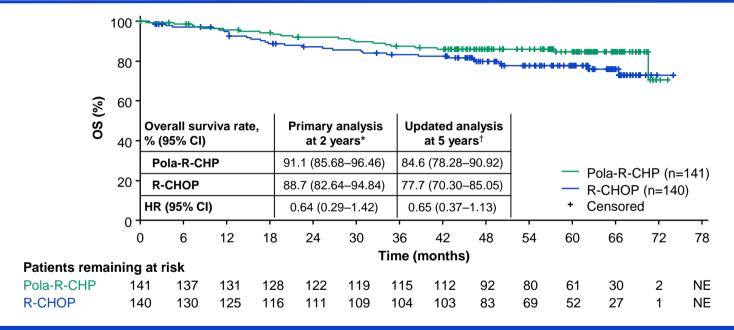
n (%), unless otherwise stated		Pola-R-CHP (n=141)	R-CHOP (n=140)
Age	Median, years (min–max)	63 (19–79)	64 (23–78)
	≥65 years	58 (41.1)	67 (47.9)
Sex	Male	71 (50.4)	78 (55.7)
ECOG PS	0–1	116 (82.3)	121 (86.4)
	2	25 (17.7)	19 (13.6)
Stratification - IPI score (IxRS)	2	54 (38.3)	53 (37.9)
	3–5	87 (61.7)	87 (62.1)
Stratification - bulky disease (IxRS)	Absent	98 (69.5)	98 (70.0)
	Present	43 (30.5)	42 (30.0)
Ann Arbor stage	-	19 (13.5)	21 (15.0)
		40 (28.4)	52 (37.1)
	V	82 (58.2)	67 (47.9)
Baseline LDH	≤1xULN	45 (31.9)	41 (29.3)
	>1xULN	96 (68.1)	99 (70.7)
Number of extranodal sites	≥2	64 (45.4)	58 (41.4)
NHL histologic diagnosis (eCRF)	DLBCL NOS, ABC, GCB	131 (92.9)	128 (91.4)
	HGBL, NOS, DHL/THL	6 (4.3)	3 (2.1)
	Other large B-cell	4 (2.8)	9 (6.4)
COO centrally reported by NanoString	ABC GCB Unclassified Unknown	55 (55.0) 30 (30.0) 15 (15.0) 41	46 (46.0) 40 (40.0) 14 (14.0) 40


Initial PFS benefit of Pola-R-CHP over R-CHOP is maintained at 5 years

After the 5-year follow up, Pola-R-CHP had a sustained and clinically meaningful PFS benefit in the Asia subpopulation (HR: 0.74)

*Data cut-off: June 28, 2021; †Data cut-off: July 5, 2024.

EFS shows similar treatment effect as PFS at 5 years


After the 5-year follow up, EFS outcomes were consistent with results of the primary endpoint (PFS) suggesting clinical benefit for Pola-R-CHP vs R-CHOP in the Asia subpopulation

*Data cut-off: June 28, 2021;

†Data cut-off: July 5, 2024.

HR: unstratified

5-year OS shows favorable results for Pola-R-CHP-treated patients

After the 5-year follow up, the risk of death was reduced by 35% following treatment with Pola-R-CHP vs R-CHOP in the Asia subpopulation

*Data cut-off: June 28, 2021;

†Data cut-off: July 5, 2024.

HR: unstratified.

5-year PFS outcomes show consistent treatment effect of Pola-R-CHP across subgroups in the Asia subpopulation

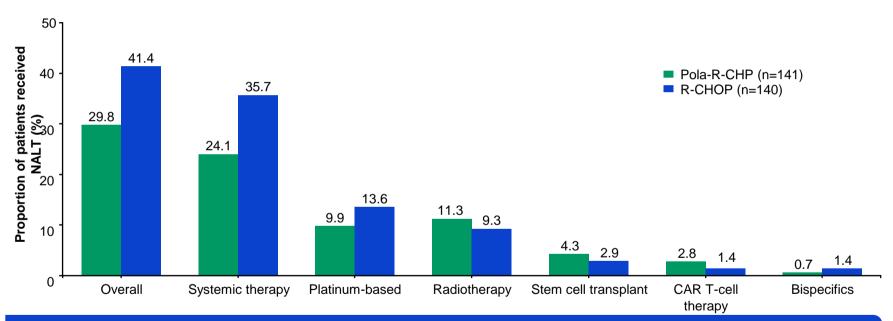
Baseline		Total R-CHOP (n=140)				Pola-R-CHP (n=141)					Pola-R-CHP R-CHOP
characteristics Subgroups	n	n	Events	5 years rate	n	Events	5 years rate	HR	95% Wald Cl	better better	
Overall		281	140	56	57.26	141	48	63.95	0.74	0.5-1.1	 -
Age group	>65 18–65	112 169	60 80	25 31	57.46 57.97	52 89	15 33	65.69 63.73	0.69 0.77	0.36-1.31 0.47-1.26	
IPI score	IPI 2 IPI 3–5	107 174	53 87	17 39	65.03 52.21	54 87	16 32	69.98 60.74	0.93 0.66	0.47-1.84 0.41-1.05	
Bulky disease	Absent Present	196 85	98 42	35 21	62.66 44.6	98 43	31 17	69.11 49.4	0.77 0.69	0.47-1.26 0.36-1.31	
Baseline LDH	≤1xULN >1xULN	84 197	39 101	16 40	51.39 58.97	45 96	16 32	63.94 63.9	0.81 0.72	0.4-1.62 0.45-1.16	
No. of extranodal sites	≥2 0–1	122 159	58 82	27 29	47.57 63.7	64 77	25 23	57.87 69.8	0.67 0.8	0.39-1.17 0.46-1.38	
COO	ABC GCB	101 70	46 40	22 12	51.91 69.28	55 30	16 9	73.14 67.61	0.44 1.09	0.23-0.85 0.46-2.6	-
C00	Unclassified Unknown	29 81	14 40	4 18	72.92 43.81	15 41	5 18	66.67 46.54	1.42 0.9	0.34-5.96 0.47-1.73	
Double expressor by IHC	DEL Non-DEL Unknown	76 147 58	41 72 27	21 24 11	51.1 61.26 57.69	35 75 31	13 23 12	58.34 71.12 54.85	0.65 0.74 1	0.32-1.29 0.42-1.33 0.44-2.26	
M1 macrophage	High Low	72 73	41 34	16 15	59.87 58.82	31 39	9	72.77 73.49	0.54 0.52	0.23-1.27 0.23-1.16	
	Unknown Negative	136 120	65 58	25 24	52.36 58	71 62	29 18	51.61 71.3	0.97 0.58	0.56-1.66	0.08 0.12 0.17 0.25 0.35 0.50 0.70 1.0 1.41 2.0
Dark Zone Signature	Positive Unknown	25 136	17 65	7 25	62.5 52.36	8 71	1 29	87.5 51.61	0.29 0.97	0.04-2.44 0.56-1.66	8 5 7 0 4 0 7 0 0 0

Please note that subgroup analysis of the Asia subpopulation is not a pre-specified analysis, and the sample size is very limited, translating univariate subgroup results into patient care should be applied with caution

5-year OS outcomes show consistent treatment effect of Pola-R-CHP across subgroups in the Asia subpopulation

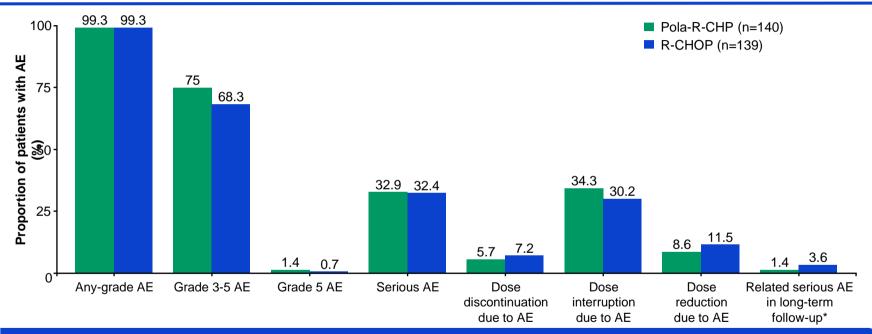
Baseline Subgroups		Total	al R-CHOP (n=140)			Pola-R-CHP (n=141)					Pola-R-CHP	R-CHOP
		n	n	Events	5 years rate	n	Events	5 years rate	HR	95% Wald CI		better
Overall		281	140	30	77.67	141	21	84.6	0.65	0.37-1.13		I
Age group	>65 18–65	112 169	60 80	14 16	75.79 79.12	52 89	7 14	84.24 85.05	0.57 0.68	0.23-1.41 0.33-1.4	-	
IPI score	IPI 2 IPI 3–5	107 174	53 87	6 24	88.06 70.87	54 87	5 16	90 81.52	0.86 0.58	0.26-2.82		
Bulky disease	Absent Present	196 85	98 42	15 15	85.31 58.8	98 43	14 7	86.26 80.47	0.9 0.39	0.43-1.86 0.16-0.96		
Baseline LDH	≤1xULN >1xULN	84 197	39 101	6 24	86.29 74.44	45 96	3 18	92.9 80.81	0.41 0.73	0.1-1.64 0.4-1.35	-	
No. of extranodal sites	≥2 0-1	122 159	58 82	16 14	70.9 81.77	64 77	11 10	82.77 86.24	0.52 0.76	0.24-1.12 0.34-1.71		
COO	ABC GCB	101 70	46 40	9 7	77.54 84.93	55 30	6 2	90.73 92.31	0.49 0.39	0.18-1.39 0.08-1.87		
	Unclassified Unknown	29 81	14 40	1 13	91.67 65.79	15 41	2 11	86.67 70.03	1.67 0.74	0.15-18.45 0.33-1.65	-	
Double expressor by IHC	DEL Non-DEL Unknown	76 147 58	41 72 27	10 13 7	76.41 80.64 73.08	35 75 31	7 6 8	77.92 93.03 71.92	0.85 0.39 1.01	0.32-2.24 0.15-1.03 0.37-2.78		
M1 macrophage	High Low	72 73	41 34	10 5	73.68 87.53	31 39	5 3	86.21 91.96	0.59 0.52	0.2-1.73 0.12-2.16		
	Unknown Negative	136 120	65 58	15 11	75.84 81.5	71 62	13 8	78.09 88.01	0.72 0.68	0.34-1.51 0.27-1.68	0.08 0.12 0.17 0.25 0.35 0.50 0.70 1.0	1.41 2.0
Dark Zone Signature	Positive Unknown	25 136	17 65	4 15	75 75.84	8 71	0 13	100 78.09	0 0.72	0-Inf 0.34-1.51	8 5 7 0 4 0 7 0	0 0

Please note that subgroup analysis of the Asia subpopulation is not a pre-specified analysis, and the sample size is very limited, translating univariate subgroup results into patient care should be applied with caution


Causes of death

n (%), unless otherwise stated	Pola-R-CHP (n=141)	R-CHOP (n=140)		
Total number of deaths	22 (15.6)	32 (22.9)		
Primary cause of death				
Disease progression	14 (9.9)	22 (15.7)		
Not disease related	5 (3.5)	5 (3.6)		
Cardiovascular	1 (0.7)	1 (0.7)		
COVID-19	1 (0.7)	1 (0.7)		
Infection	1 (0.7)	1 (0.7)		
Liver failure	0	1 (0.7)		
Secondary malignancy*	2 (1.4)	1 (0.7)		
Unknown [†]	3 (2.1)	5 (3.6)		

Deaths associated with lymphoma progression are fewer with Pola-R-CHP in the Asia subpopulation


*Carcinogenicity includes treatment-emergent adverse events (TEAEs) with onset during the AE reporting period and after the TEAE reporting window. The TEAE period is defined as new or worsening AEs from the first dose of any study drug through 90 days after the last dose or prior to new anti-lymphoma therapy (NALT), whichever occurs first. Carcinogenicity events included acute myeloid leukemia and glottis carcinoma (R-CHOP arm), and colorectal cancer (Pola-R-CHP arm; 1 patient each). †Deaths due to unknown reasons refer to those reported via public records without cause of death, per reporting standards.

Fewer patients treated with Pola-R-CHP required subsequent therapies vs patients treated with R-CHOP

Patterns of subsequent therapies in Asia subpopulation mirror routine clinical care at the time of study conduct

Safety profile remained comparable between arms

Safety profile remains consistent with primary analysis in Asia subpopulation.

No new safety signals were detected during long-term follow-up

^{*}TEAEs are defined as new or worsening AE from the first dose of study drug through 90 days after the last dose of any study drug or prior to NALT, whichever is earlier. After this TEAE period, the post-TEAE period (i.e. long-term safety follow up) reporting requirement is only for serious AEs that the investigator believes to be related to prior study drug treatment.

Select AEs of particular interest are consistent with the identified risks associated with polatuzumab vedotin

Patients, n (%)	R-CHOP (N=139)	Pola-R-CHP (N=140)
Peripheral neuropathy All grade Grade 3–5	72 (51.8) 1 (0.7)	63 (45.0) 0
Infections and infestations All grade Grade 3–5	67 (48.2) 22 (15.8)	58 (41.4) 15 (10.7)
Cardiac arrhythmia All grade Grade 3–5	10 (7.2) 2 (1.4)	5 (3.6) 1 (0.7)
Neutropenia All grade Grade 3–5	85 (61.2) 71 (51.1)	96 (68.6) 85 (60.7)

Patients, n (%)	R-CHOP (N=139)	Pola-R-CHP (N=140)
Anemia All grade Grade 3–5	59 (42.4) 18 (12.9)	63 (45.0) 12 (8.6)
Thrombocytopenia All grade Grade 3–5	46 (33.1) 15 (10.8)	53 (37.9) 13 (9.3)
Carcinogenicity* All grade Grade 3–5	1 (0.7) 1 (0.7)	2 (1.4) 2 (1.4)

The AEPIs remain comparable between arms, and consistent with the identified risks associated with polatuzumab vedotin in Asia subpopulation

Conclusions

- Pola-R-CHP continues to show a clinically meaningful improvement in INV-assessed PFS versus R-CHOP in the Asia subpopulation
- With longer follow-up, the reduction in risk of death following treatment with Pola-R-CHP was maintained, suggesting a sustained effect of OS
- Favorable outcomes were seen in Pola-R-CHP across exploratory subgroups in the Asia subpopulation, but cautious interpretation is strongly advised
- The safety profile remained comparable between the two regimens, and no new safety signals were identified
- In general, 5-year data support Pola-R-CHP as the standard of care in frontline LBCL in Asia