Transplant-Free First-Line MCL: Opportunities and Challenges in the New Treatment Era

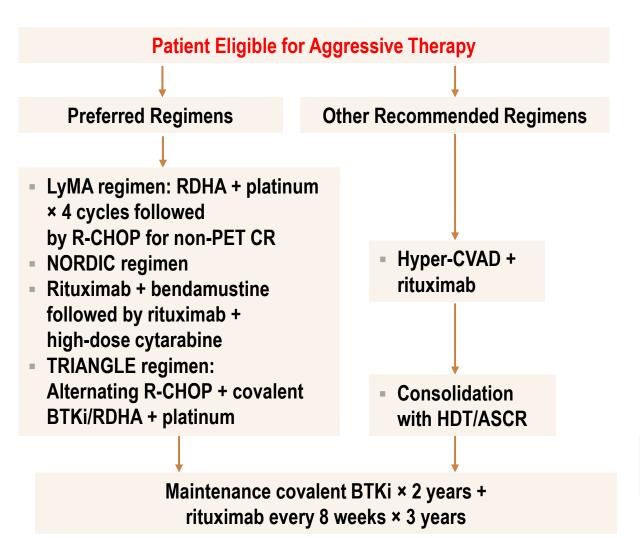
Alexey V. Danilov, M.D., Ph.D.

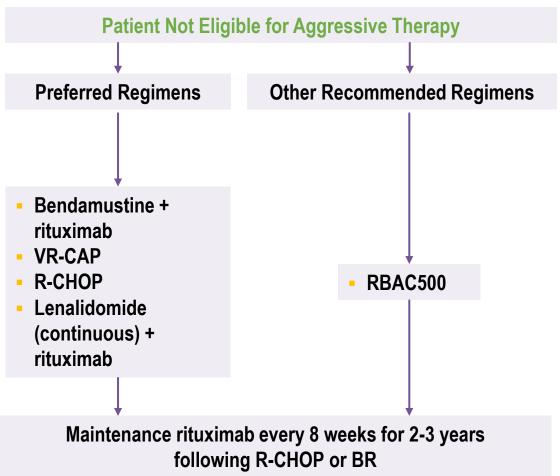
Marianne and Gerhard Pinkus Professor in Early Clinical Therapeutics

Director, Early Phase Therapeutics Program

Co-Director, Toni Stephenson Lymphoma Center

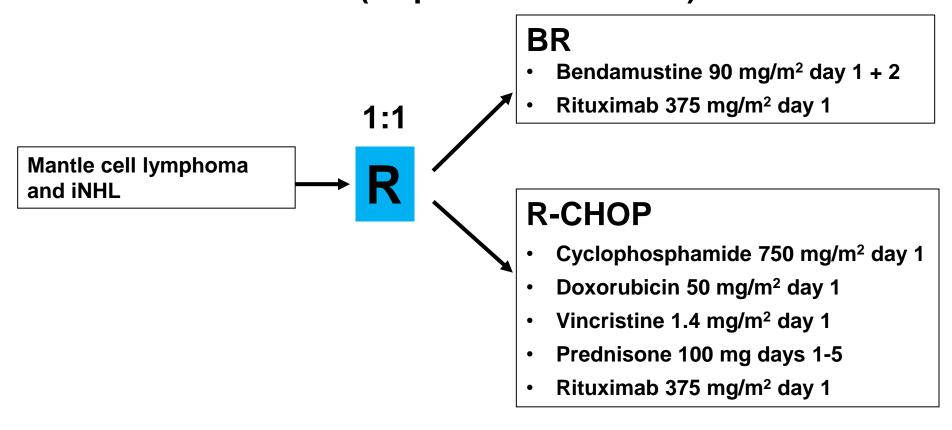
City of Hope National Medical Center




Disclosures

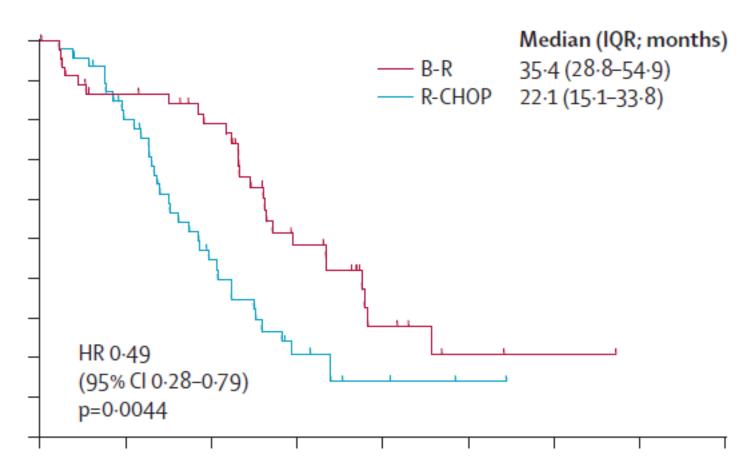
- Consulting fees: Abbvie, AstraZeneca, BeiGene, Bristol Meyers Squibb, Genentech, GenMab, Incyte, Janssen, Lilly Oncology, MEI Pharma, Merck, Nurix and Prelude
- Research funding: Abbvie, AstraZeneca, Bayer Oncology, Beigene, Bristol Meyers Squibb, Cyclacel, GenMab, Lilly Oncology, MEI Pharma, Morphosys and Nurix.

"Classical" approach to treatment of MCL – before TRIANGLE



Older patients: not eligible for aggressive induction

StiL Trial: BR vs R-CHOP

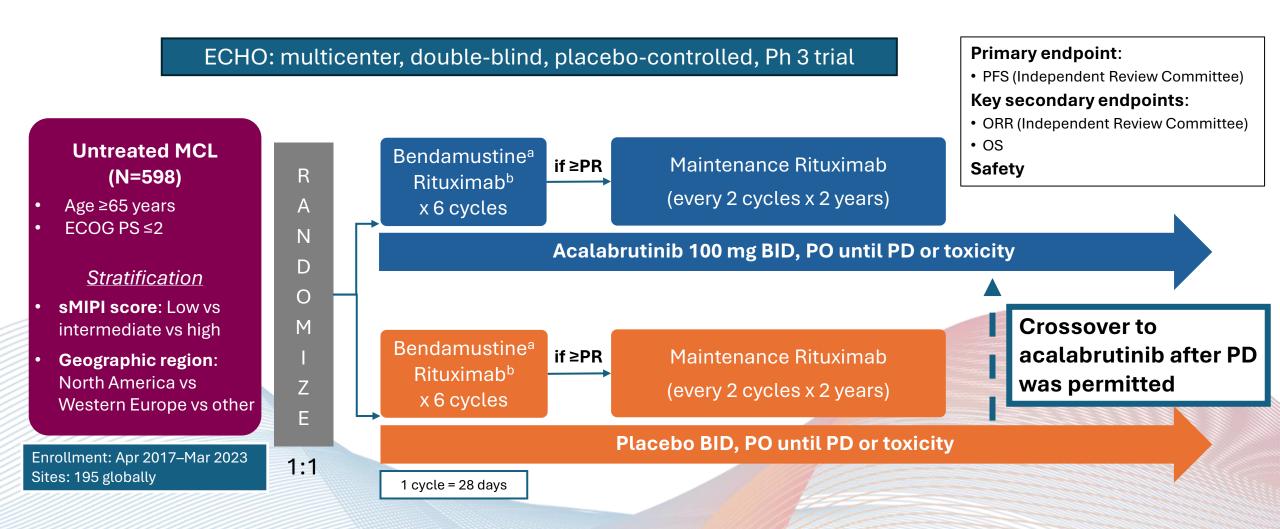

Phase III noninferiority trial N = 549 (94 patients with MCL)

StiL, Study group indolent Lymphomas

Rummel MJ, et al. Lancet. 2013;381(9873):1203-1210.

StiL Trial: Progression-Free Survival (PFS)

HR, hazard ratio; IQR, interquartile range


Rummel MJ, et al. *Lancet.* 2013;381(9873):1203-1210.

Acalabrutinib plus bendamustine and rituximab in untreated mantle cell lymphoma (MCL): Results from the phase 3, double-blind, placebo-controlled ECHO trial

Michael Wang¹, Jiri Mayer², David Belada³, Yuqin Song⁴, Wojciech Jurczak⁵, Jonas Paludo⁶, Michael P. Chu⁷, Iryna Kryachok⁸, Laura Fogliatto⁹, Chan Cheah¹⁰, Marta Morawska^{11,12}, Juan-Manuel Sancho¹³, Yufu Li¹⁴, Caterina Patti¹⁵, Cecily Forsyth¹⁶, Jingyang Zhang¹⁷, Robin Lesley¹⁷, Safaa Ramadan¹⁸, Simon Rule¹⁸, Martin Dreyling¹⁹

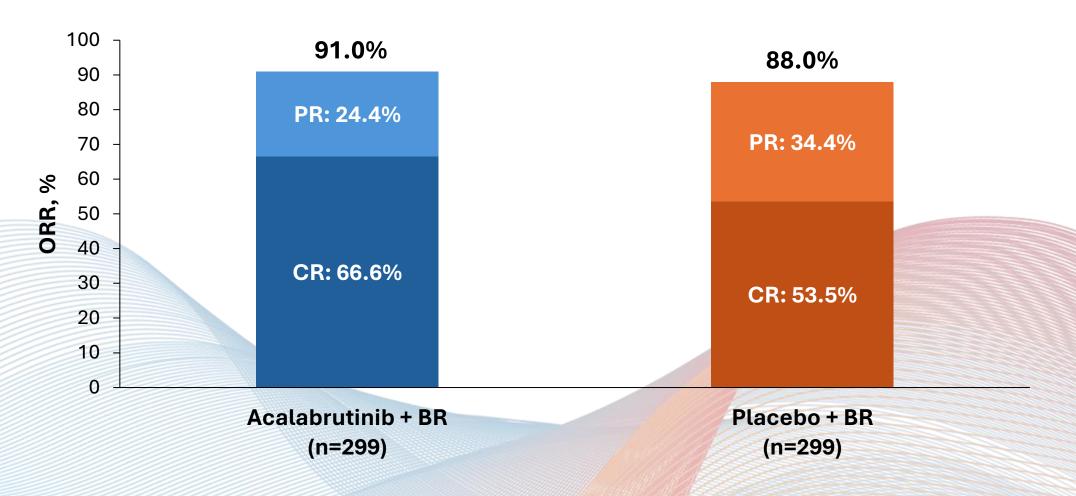
¹MD Anderson Cancer Center, University of Texas, Houston, TX, USA; ²University Hospital Brno, Brno, Czech Republic;
 ³4th Department of Internal Medicine – Haematology, Charles University, Hospital and Faculty of Medicine, Hradec Králové, Czech Republic;
 ⁴Peking University Cancer Hospital & Institute, Beijing, China; ⁵Malopolskie Centrum Medyczne S.C, Krakow, Poland;
 ⁶Mayo Clinic, Rochester, MN, USA; ⁷Cross Cancer Institute, University of Alberta, Edmonton, Canada; ⁸National Cancer Institute, Kyiv, Ukraine;
 ⁹Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil; ¹⁰Sir Charles Gairdner Hospital, Nedlands, Australia; ¹¹Experimental Hematooncology Department, Medical University of Lublin, Lublin, Poland; ¹²Hematology Department, St. John's Cancer Center, Lublin, Poland;
 ¹³ICO-IJC-Hospital Germans Trias i Pujol, Badalona, Spain; ¹⁴Henan Cancer Hospital, Zheng Zhou, China;
 ¹⁵A.O.O.R. Villa Sofia Cervello, Palermo, Italy; ¹⁶Central Coast Haematology, North Gosford, Australia;
 ¹⁷AstraZeneca, South San Francisco, CA, USA; ¹⁸AstraZeneca, Cambridge, UK; ¹⁹Klinikum der Universitaet Munchen, Muenchen, Germany

Study Design

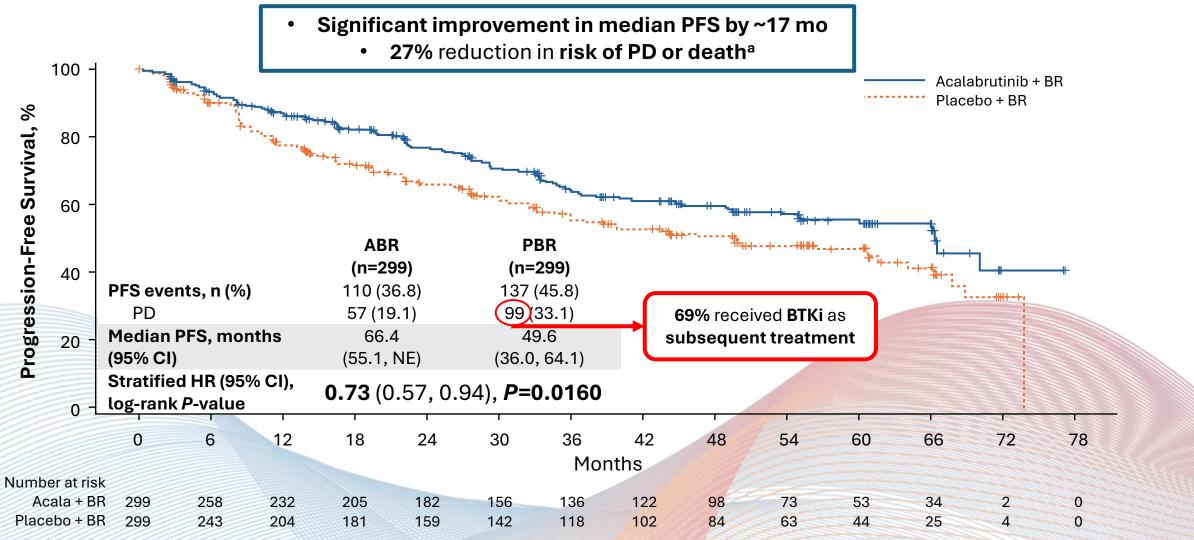
^aBendamustine 90 mg/m² on days 1 and 2. ^bRituximab 375 mg/m² on day 1.

BID, twice daily; ECOG PS, Eastern Cooperative Oncology Group performance status; MCL, mantle cell lymphoma; sMIPI, simplified Mantle Cell Lymphoma International Prognostic Index; ORR, overall response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PO, orally; PR, partial response.

Demographics and Baseline Characteristics


	Acalabrutinib + BR (n=299)	Placebo + BR (n=299)
Age, median (range), y	71 (65–85)	71 (65–86)
≥75 y, n (%)	84 (28.1)	77 (25.8)
Male, n (%)	214 (71.6)	209 (69.9)
ECOG PS, n (%)		
1	129 (43.1)	132 (44.1)
2	12 (4.0)	23 (7.7)
Tumor bulk ≥5 cm, n (%)	112 (37.5)	113 (37.8)
Blastoid/pleomorphic histology, n (%)	41 (13.7)	38 (12.7)
Simplified MIPI score, n (%)		
Low risk	99 (33.1)	101 (33.8)
Intermediate risk	128 (42.8)	125 (41.8)
High risk	72 (24.1)	73 (24.4)
Extranodal disease, n (%)	264 (88.3)	277 (92.6)
TP53 status, n (%)ª		
Mutated	22 (7.4)	29 (9.7)
Unmutated	97 (32.4)	83 (27.8)
Ki-67, n (%)		
<30%	133 (44.5)	126 (42.1)
≥30%	139 (46.5)	147 (49.2)

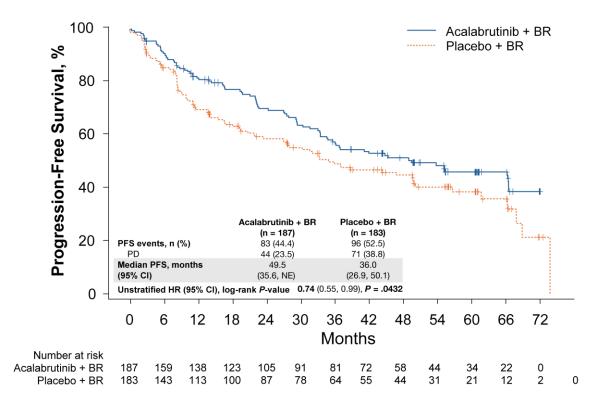
^aAll other patients in the acalabrutinib (n=180) and placebo (n=187) groups had unknown *TP53* mutation status.


BR, bendamustine + rituximab; ECOG PS, Eastern Cooperative Oncology Group performance status; MIPI, Mantle Cell Lymphoma International Prognostic Index.

Best Overall Response and Complete Response Rates

• An additional 13% of patients achieved CR with acalabrutinib + BR

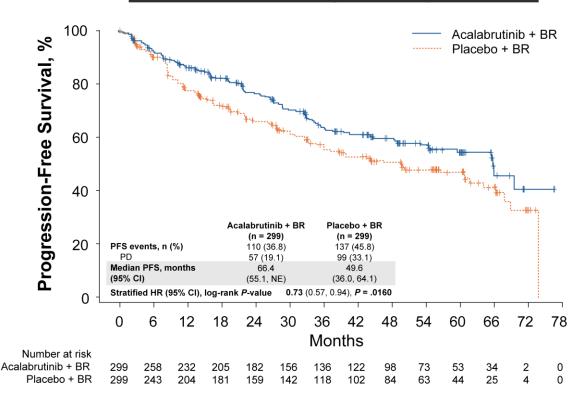
PFS (primary endpoint) Was Significantly Improved With Acalabrutinib + BR



^aAt a median follow-up of 45 months.

ABR, acalabrutinib + bendamustine + rituximab; BR, bendamustine + rituximab; BTKi, Bruton tyrosine kinase inhibitor; CI, confidence interval; HR, hazard ratio; NE, not estimable; PBR, placebo + bendamustine + rituximab; PD, progressive disease; PFS, progression-free survival.

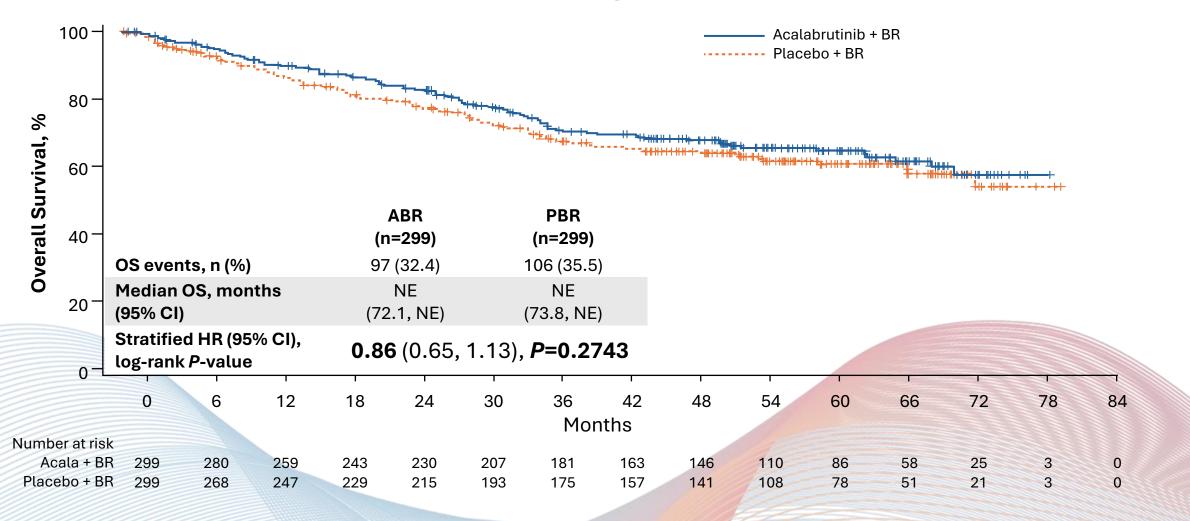
Significantly Longer PFS With ABR in Patients With High-risk MCL


PFS in High-risk Population¹

 After PD, 38 (53.5%) of 71 patients with high-risk disease who progressed on placebo crossed over to acalabrutinib

BR, bendamustine-rituximab; BTKi, Bruton tyrosine kinase inhibitor; CI, confidence interval; HR, hazard ratio; MCL, mantle cell lymphoma; NE, not estimable; PD, progressive disease; PFS, progression-free survival.

PFS in Full Analysis Population²



Of the 99 patients who progressed on placebo, 75 (75.8%) received at least 1 subsequent anticancer therapy, and among these 75, 68 (90.7%) received BTKis, including 51 patients who crossed over to acalabrutinib within the trial

^{1.} Presented at the European Hematology Association (EHA) Annual Meeting; June 12–15, 2025; Milan, Italy. S233

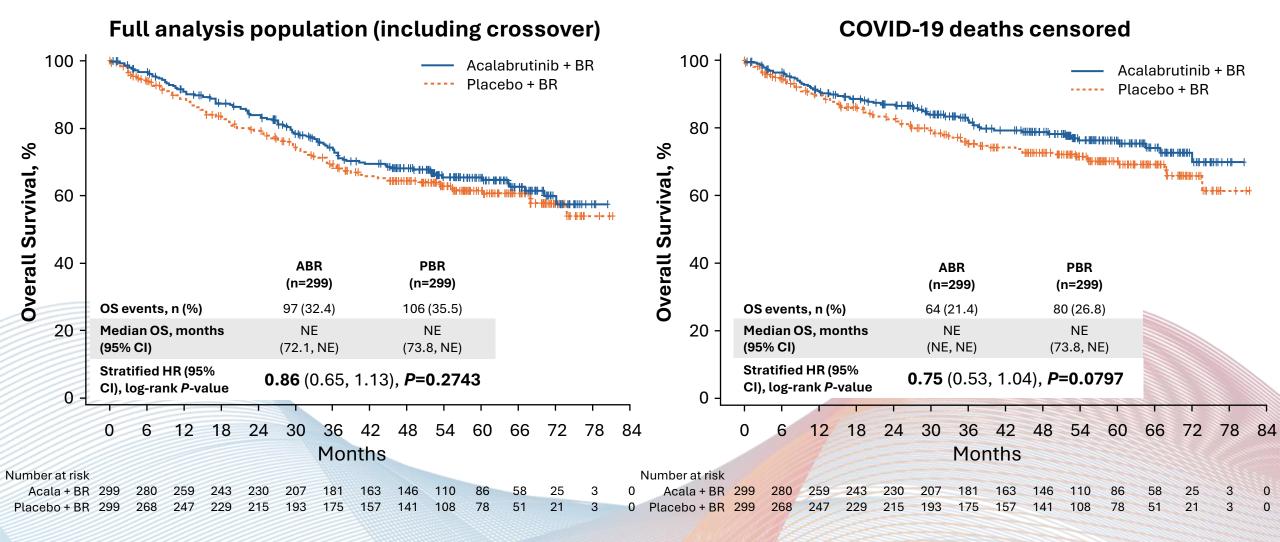
^{2,} Wang M, et al. J Clin Oncol. 2025:101200JCO2500690. doi: 10.1200/JCO-25-00690. Online ahead of print.

Overall Survival Including Crossover

Median follow-up of 45 months.

ABR, acalabrutinib + bendamustine + rituximab; BR, bendamustine + rituximab; CI, confidence interval; HR, hazard ratio; NE, not estimable; OS, overall survival; PBR, placebo + bendamustine + rituximab.

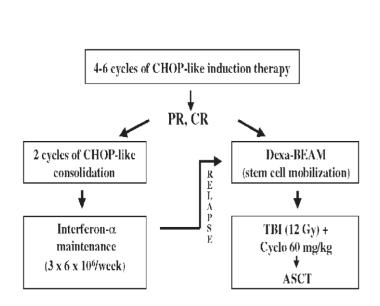
Adverse Events of Interest

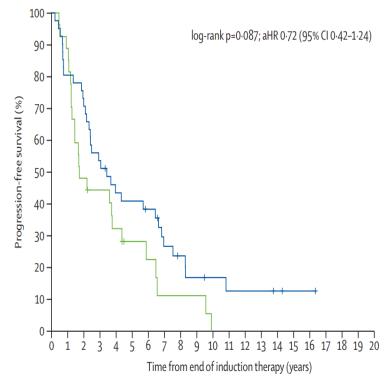

	Acalabrutinib + BR (n=297)		Placebo + BR (n=297)	
	Any grade	Grade ≥3	Any grade	Grade ≥3
Event, n (%)				
Atrial fibrillation	18 (6.1)	11 (3.7)	13 (4.4)	5 (1.7)
Hypertension	36 (12.1)	16 (5.4)	47 (15.8)	25 (8.4)
Major bleeding ^a	7 (2.4)	6 (2.0)	16 (5.4)	10 (3.4)
Infections ^b	232 (78.1)	122 (41.1)	211 (71.0)	101 (34.0)
Second primary malignancies (excluding non-melanoma skin) ^b	29 (9.8)	16 (5.4)	32 (10.8)	20 (6.7)
Median treatment exposure (range), months	29 (0.1	1, 80.1)	25 (0.0	3, 76.4)

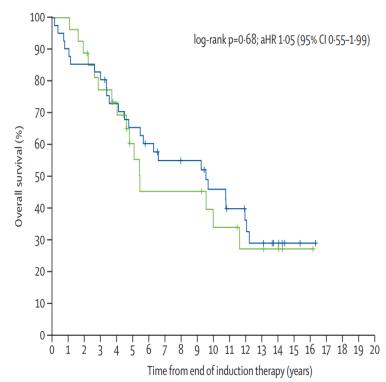
aGrouping of preferred terms; defined as a hemorrhagic event that is serious, or grade ≥3 in severity, or that is a CNS hemorrhage (any severity grade). BR, bendamustine + rituximab; CNS, central nervous system.

Deaths

n (%)	Acalabrutinib + BR (n=299)	Placebo + BR including crossover (N=299)
Total deaths	97 (32.4)	106 (35.5)
Due to disease progression	30 (10.0)	43 (14.4)
Due to AEs ≤30 days of last dose of study drug (TEAEs)	27 (9.0)	27 (9.0)
Due to AEs >30 days after last dose of study drug	19 (6.4)	14 (4.7)
Other ^a	14 (4.7)	16 (5.4)
Unknown	7 (2.3)	6 (2.0)


OS With and Without COVID-19 Deaths: Prespecified Sensitivity Analysis

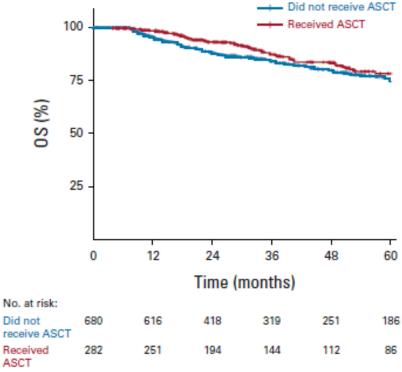



ABR, acalabrutinib + bendamustine + rituximab; CI, confidence interval; COVID-19, coronavirus disease 2019; HR, hazard ratio; NE, not estimable; OS, overall survival; PBR, placebo + bendamustine + rituximab.

...and now to younger patients eligible for aggressive induction...

There are no randomized trials which confirm benefit of ASCT in MCL





ASCT in MCL: retrospective analysis – Flatiron cohort

	Age < 65 Years and ASCT-Eligible n = 962		
	Received ASCT n = 282	Did Not Receive ASCT n = 680	
Median rwTTNT (95% CI), months	59.9 (51.3 to 75.6)	48.3 (41.9 to 53.6)	
rwTTNT rate at 3 years, % (95% CI)	65 (59 to 71)	59 (55 to 64)	
HR (95% CI)	0.84 (0.68 to 1.03)		
Log-rank test P	.10		

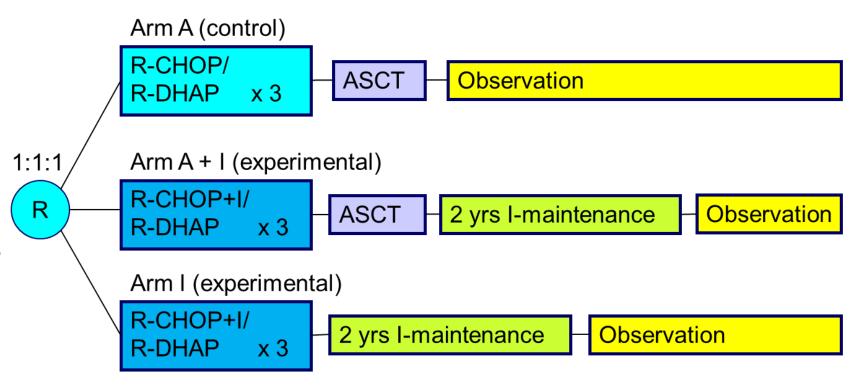
		Age < 65 Years and ASCT-Eligible n = 962	
	Received ASCT n = 282	Did Not Receive ASCT n = 680	
Median OS (95% CI), months	109 (96.1 to NE)	113 (102.9 to NE)	
OS rate at 3 years, % (95% CI)	88 (83 to 92)	84 (81 to 88)	
HR (95% CI)	0.86 (0.6	0.86 (0.63 to 1.18)	
Log-rank test P		.4	

Has transplant-free future arrived in MCL?

YES!..

Abstract #240: Role of Autologous Stem Cell Transplantation in the Context of Ibrutinib-Containing First-Line Treatment in Younger Patients with Mantle Cell Lymphoma: Results from the Randomized Triangle Trial By the European MCL Network

Martin Dreyling, MD1, Jeanette K Doorduijn, MD, PhD2, Eva Gine, MD3, Mats Jerkeman, MD, PhD4, Jan Walewski, MD, Prof.5, Martin Hutchings, MD, PhD6,7, Ulrich Mey, MD, Prof.8,9, Jon Riise, MD, PhD10*, Marek Trneny, Prof., MD, CSc.11, Vibeke KJ Vergote, MD12*, Daniela Donnarumma13*, Ofer Shpilberg, MD, MPH14*, Maria Gomes da Silva, MD, PhD15*, Sirpa Leppä, MD, PhD16, Linmiao Jiang, MSc17*, Christiane Pott, MD18*, Wolfram Klapper, MD, Prof.19*, Christian Schmidt, MD20*, Michael Unterhalt, MD21*, Marco Ladetto, MD22 and Eva Hoster, PhD, Prof.23,24*

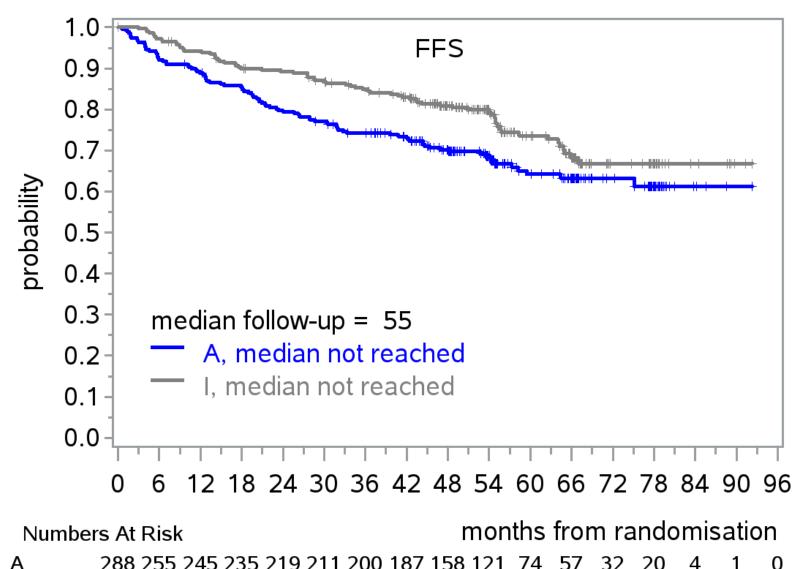

1 University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom, 2 Lund University Hospital, Lund, Sweden, 3 Plymouth University, Faculty of Health, Plymouth, United Kingdom, 4 Institute of Health Research, Exeter University, Exeter, United Kingdom, 5 Department of Immunology, Genetics and Pathology, Cancer Precision Medicine Unit, Uppsala University, Uppsala, Sweden, 6 Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland, 7 Dept. of Hematology, Odense University Hospital, Odense, Denmark, 8 St. Olav University Hospital, Department of Oncology, Trondheim, Norway, 9 Southampton Experimental Cancer Medicine Centre, University of Southampton, Southampton, United Kingdom, 10 Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom, 11 University College London Hospitals NHS Foundation Trust, London, United Kingdom, 12 Department of Hematology, Zealand University Hospital, Roskilde, Denmark, 13 Department of Oncology, Oslo University Hospital, Oslo, Norway, 14 Karolinska University Hospital, Department of Haematology, Stockholm, Sweden, 15 Linkoping University Hospital, Linkoping, Sweden, 16 Haematology, Leeds Cancer Centre, Leeds, United Kingdom, 17 HMDS, Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom, 18 Haematological Malignancy Diagnostic Service, Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom, 20 Department of Hematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark, 21 Aarhus University Hospital, Aarhus C, Denmark, 22 Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom, 23 Department of Clinical Haematology, Oxford University Hospitals NHS Trust, Old Road, United Kingdom, 24 Executive Director, Haematology R&D, AstraZeneca, Cambridge, United Kingdom.

TRIANGLE: Trial Design

- Patients with MCL
- Previously untreated
- Stage II-IV
- <66 years</pre>
- Suitable for HA and ASCT
- **•**ECOG 0-2

- R maintenance was added following national guidelines in all 3 trial arms
- Rituximab maintenance (without or with Ibrutinib) was started in 168 (58 %)/165 (57 %)/158 (54 %) of A/A+I/I randomized patients.
- Follow-up = 55 months

TRIANGLE: FFS Superiority of A+I vs. A


- Superiority of A+I vs. A
 - 4-year FFS A+I: 82%
 - 4-year FFS A: 70%
- p-value (overrunning, one-sided):p=0.0026
- •HR (A+I vs. A): HR=0.64

Α

TRIANGLE: No FFS Superiority of A vs. I

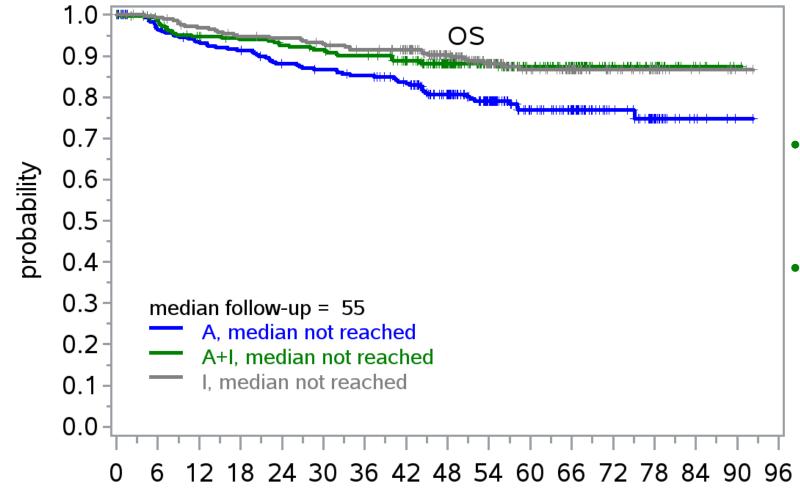
290 273 263 250 246 237 228 213 167 129 89 67

Superiority of A vs. I rejected

-4-year FFS A: 70% (MCL Younger: 70%)

-4-year FFS I: 81%

•p-value (overrunning, one-sided): p=0.9890


•HR (A vs. I): HR=1.29

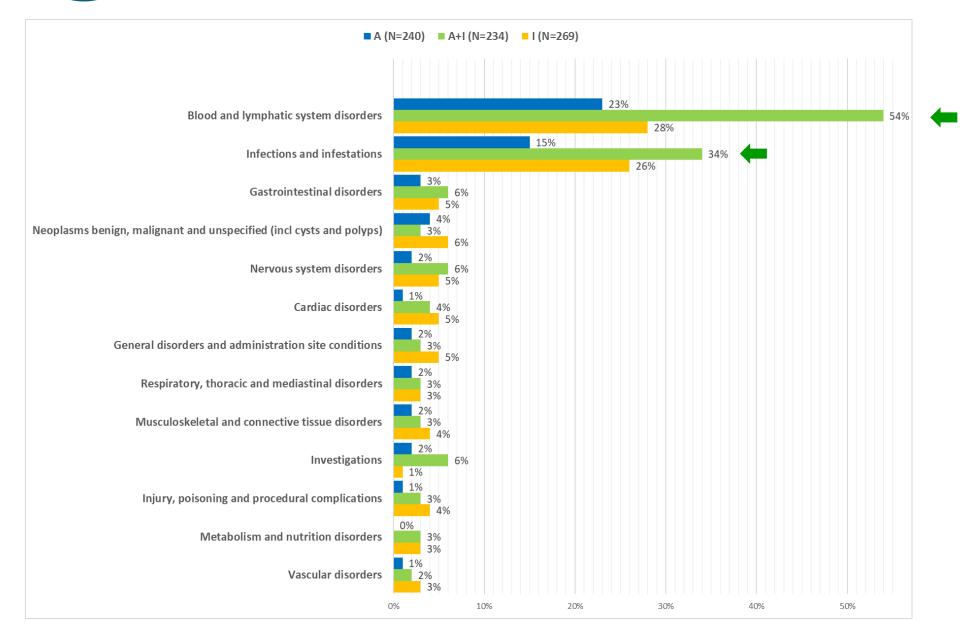
Superiority of I (two-sided, retrospective) p=0.0208

TRIANGLE: Overall survival

- ASCT + I OR I vs ASCT: Ibrutinib containing arms were superior
- **ASCT + I vs I:** Analysis Ongoing

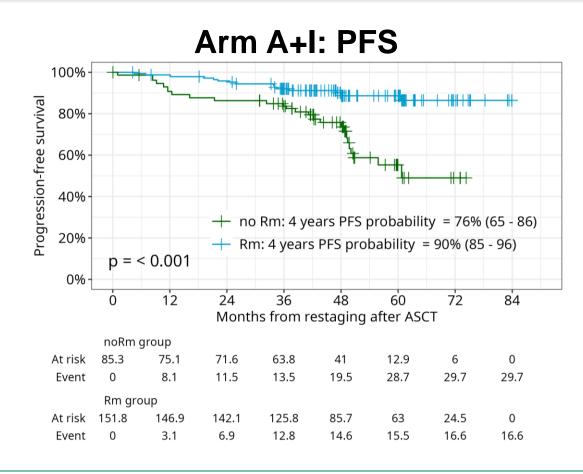
Numbers At Risk months from randomisation

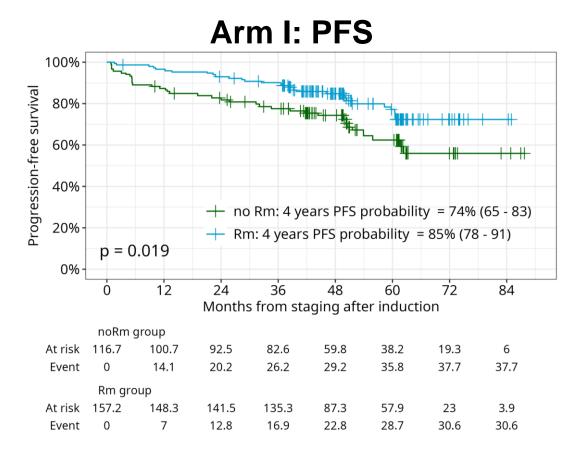
A 288 270 260 255 243 238 233 222 186 145 92 73 41 23 5 1


A+1 292 281 267 262 257 253 248 235 201 160 107 83 39 26 8 2

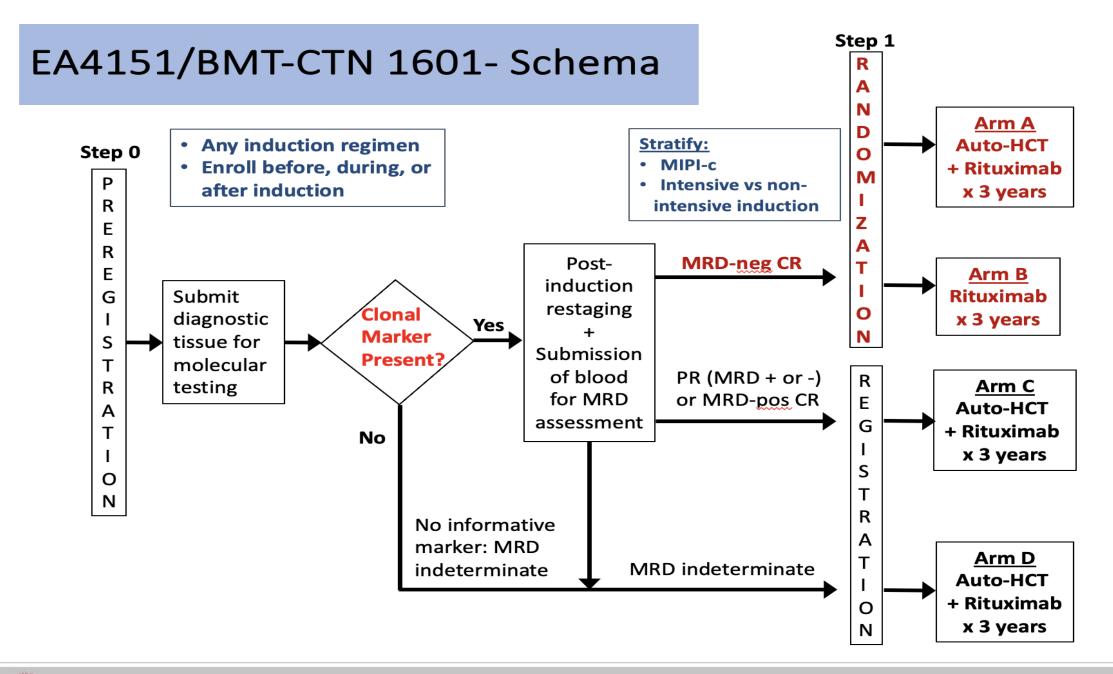
1 290 282 273 266 264 259 253 243 194 147 101 78 41 21 7 2

TRIANGLE: Grade >3 AEs (maintenance/follow-up)

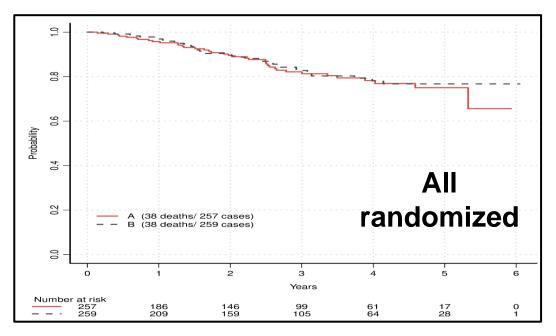


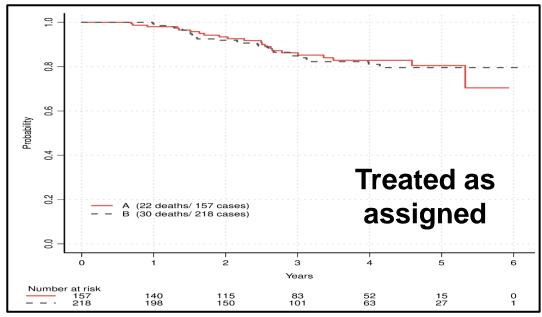


PFS based on Rituximab maintenance



LBA-6: Lack of Benefit of Autologous Hematopoietic Cell Transplantation (auto-HCT) in Mantle Cell Lymphoma (MCL) Patients (pts) in First Complete Remission (CR) with Undetectable Minimal Residual Disease (uMRD): Initial Report from the ECOG-ACRIN EA4151 Phase 3 Randomized Trial


Timothy S. Fenske, MD1, Xin Victoria Wang, PhD2*, Brian G. Till, MD3, Kristie A. Blum, MD4, Matthew Lunning, DO5, Hillard M. Lazarus, MD6, Paul A.S. Fishkin, MD7, Lale Kostakoglu Shields, MD, MPH8*, David W. Scott, MBChB, PhD9, Ann S. LaCasce, MD10, Patrick B. Johnston, MD, PhD11*, Amanda F. Cashen, MD12, Leslie L. Popplewell, MD, MPH13, Robert M. Dean, MD14, Nausheen Ahmed, MD15, Nirav N. Shah, MD16, Nina D. Wagner-Johnston, MD17, Boyu Hu, MD18, Bhagirathbhai R. Dholaria, MBBS19, Richard F. Little, MD, MPH20, Jonathan W. Friedberg, MD21, John P. Leonard, MD22 and Brad S. Kahl, MD12


1 Medical College of Wisconsin, Milwaukee, WI, 2 Dana-Farber Cancer Institute / ECOG-ACRIN Biostatistics, Boston, MA, 3 Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, 4 Emory University / Winship Cancer Institute, Atlanta, GA, 5 University of Nebraska Medical Center, Omaha, NE, 6 Case Western Reserve University, Cleveland, OH, 7 Illinois CancerCare, P.C., Peoria, IL, 8 NYU Langone Health, New York, NY, 9 Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada, 10 Dana-Farber Cancer Institute, Boston, MA, 11 Mayo Clinic, Rochester, MN, 12 Washington University School of Medicine, Saint Louis, MO, 13 City of Hope Cancer Treatment Center, Atlanta, GA, 14 Case Comprehensive Cancer Center, Cleveland Clinic Taussig Cancer Institute and Case Western Reserve University, Cleveland, OH, 15 University of Kansas Cancer Center, Kansas City, KS, 16 Medical College of Wisconsin, Brookfield, WI, 17 Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, MD, 18 Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 19 Vanderbilt University Medical Center, Nashville, TN, 20 National Cancer Institute, National Institutes of Health, Washington, DC, 21 Wilmot Cancer Institute, University of Rochester, Rochester, NY, 22 Weill Cornell Medicine, New York, NY.

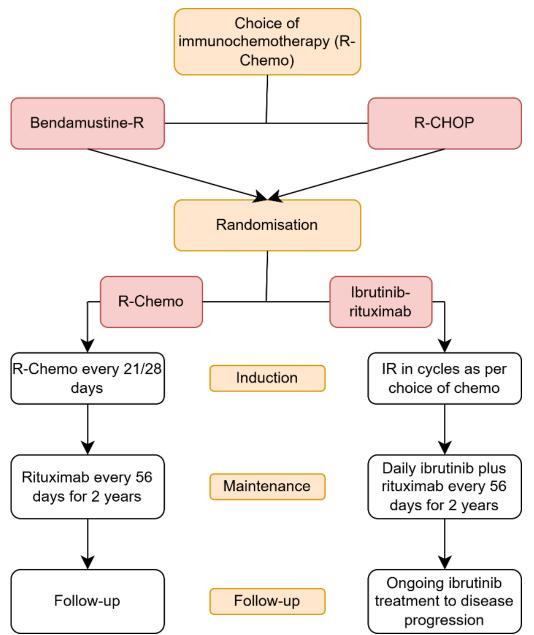
OS – Arms A & B

- With median follow up of 2.7 years, the futility boundary was an OS hazard ratio (HR) of 0.984 for Arm A vs B.
- The estimated OS HR for Arm A vs B in all randomized (n=516) and pts treated as assigned (n=375) were 1.11 (CI 0.71-1.74, p=0.66) and 1.00 (CI 0.58-1.74, p=0.99), respectively and crossed the futility boundary.
- The 3 year OS for Arms A and B were 82.1% and 82.7% in all randomized pts, and 86.2% and 84.8% in pts treated as assigned.

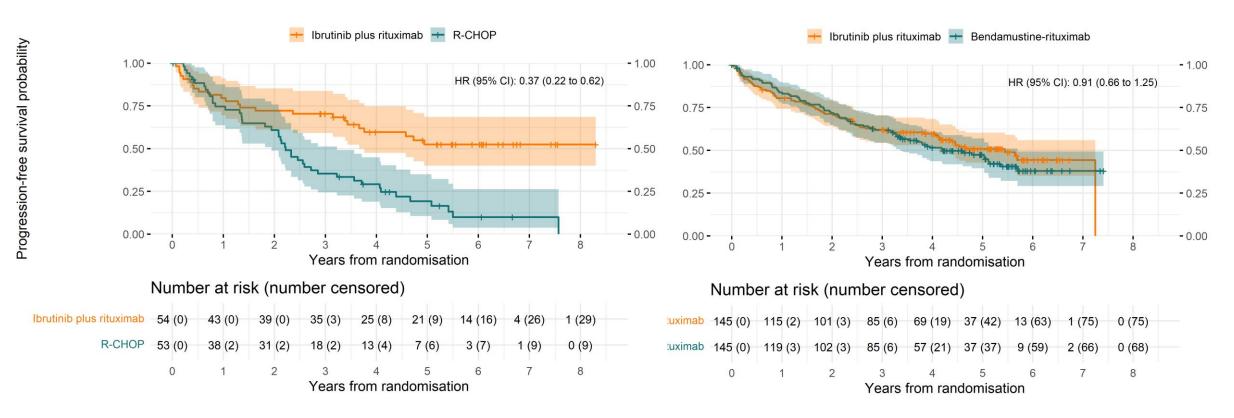
Chemo-free induction?

Abstract #235: Ibrutinib-Rituximab Is Superior to Rituximab-Chemotherapy in Previously Untreated Older Mantle Cell Lymphoma Patients: Results from the International Randomized Controlled Trial, Enrich

David John Lewis, MD1*, Mats Jerkeman, MD, PhD2, Lexy Sorrell3*, David Wright4*, Ingrid Glimelius, MD, PhD5, Annika Pasanen, MD, PhD6*, Jacob Haaber Christensen, MD, PhD7*, Karin Fahl Wader, MD, PhD8*, Andrew J. Davies, MD, PhD9*, Nick Morley10*, Christopher McNamara, MD11*, Christian Bjørn Poulsen, MD, PhD12*, Jon Riise, MD, PhD13*, Kristina Sonnevi, MD PhD14*, Ingemar Lagerlöf, PhD15*, Cathy Burton16*, Surita Dalal, PhD17*, Andrew Rawstron, PhD18*, Ruth M de Tute, MSc, PhD, FRCPath17*, Victoria Allgar19*, Sree Aroori19*, Mark Warner19*, Brian Wainman19*, Claire Scully19*, Jeanette Sanders19*, Carsten Utoft Niemann, MD, PhD20*, Helle Toldbod, PhD, MS21*, Nicola Crosbie1*, Mark J, PhD, MBChB22,


Toby A. Eyre23* and Simon Rule, MD1,24*

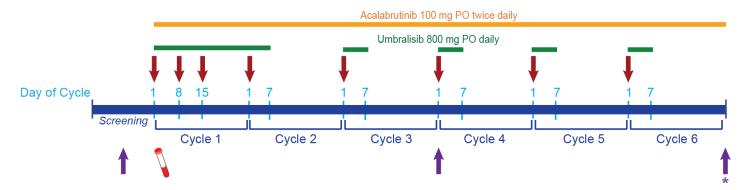
1 University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom, 2 Lund University Hospital, Lund, Sweden, 3 Plymouth University, Faculty of Health, Plymouth, United Kingdom, 4 Institute of Health Research, Exeter University, Exeter, United Kingdom, 5 Department of Immunology, Genetics and Pathology, Cancer Precision Medicine Unit, Uppsala University, Uppsala, Sweden, 6 Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland, 7 Dept. of Hematology, Odense University Hospital, Odense, Denmark, 8 St. Olav University Hospital, Department of Oncology, Trondheim, Norway, 9 Southampton Experimental Cancer Medicine Centre, University of Southampton, Southampton, United Kingdom, 10 Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom, 11 University College London Hospitals NHS Foundation Trust, London, United Kingdom, 12 Department of Hematology, Zealand University Hospital, Roskilde, Denmark, 13 Department of Oncology, Oslo University Hospital, Oslo, Norway, 14 Karolinska University Hospital, Department of Haematology, Stockholm, Sweden, 15 Linkoping University Hospital, Linkoping, Sweden, 16 Haematology, Leeds Cancer Centre, Leeds, United Kingdom, 17 HMDS, Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom, 18 Haematological Malignancy Diagnostic Service, Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom, 19 Plymouth University, Peninsula Clinical Trials Unit, Plymouth, United Kingdom, 20 Department of Hematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark, 21 Aarhus University Hospital, Aarhus C, Denmark, 22 Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom, 23 Department of Clinical Haematology, Oxford University Hospitals NHS Trust, Old Road, United Kingdom, 24 Executive Director, Haematology R&D, AstraZeneca, Cambridge, United Kingdom.


Trial design

- Inclusion criteria
- •60 years or older
- Pathologically confirmed MCL
- •Previously untreated, measurable (>1.5cm), stage II-IV MCL in need of treatment
- •ECOG 0-2
- Exclusion criteria
- Considered fit for stem cell transplantation
- CNS involvement

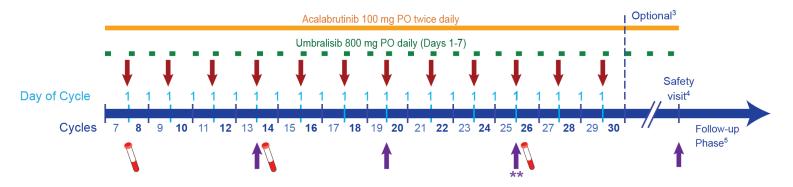
Rituximab 375mg/m²
Ibrutinib - 560mg od
Bendamustine 90mg/m² D1+D2 of 28 day cycle
CHOP - (Cyclophosphamide 750mg/m², Doxorubicin 50mg/m²,
Vincristine 1.4mg/m², Prednisolone 100mg *5 days) 21 day cycle
Maintenance rituximab - 1400mg sc every 56 days

PFS for R-CHOP or BR vs IR

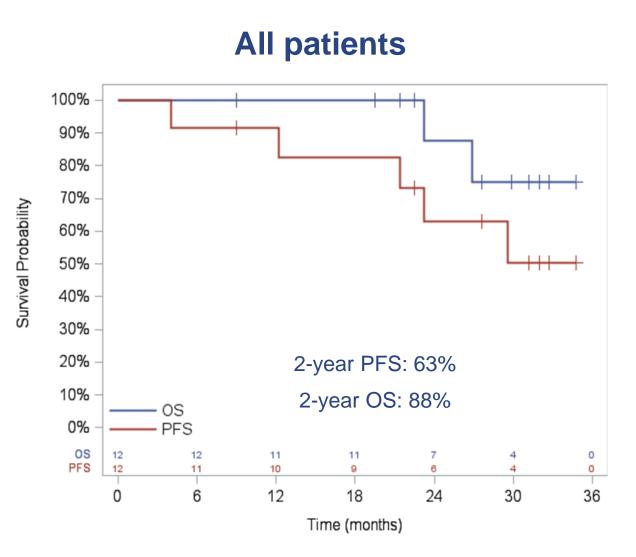

PFS difference is mainly driven by lack of benefit with R-CHOP

- Similar findings with OS Subgroup analysis:
- Blastoid (n=25) Shorter PFS with IR
- TP53 Mutation (n=40) Longer PFS with IR

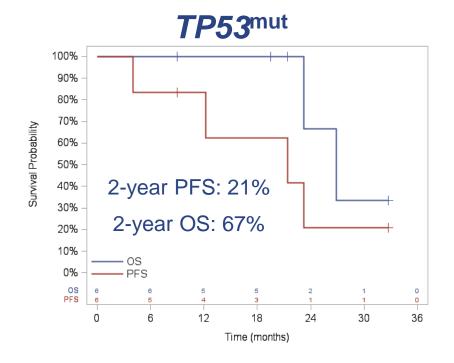
Acalabrutinib-umbralisib-ublituximab (AU2) in MCL: Dosing Schema


Induction Phase (6 cycles)

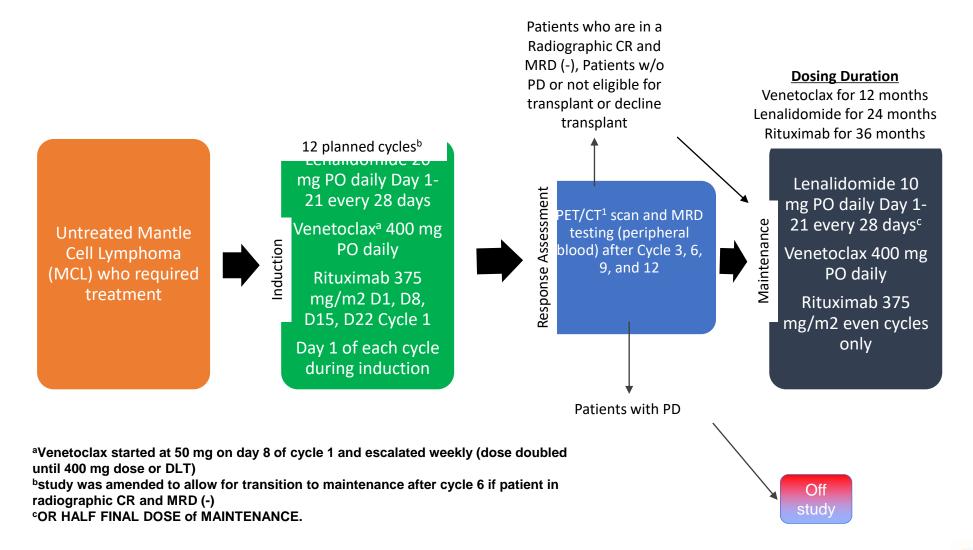
12 patients 6/12 had *TP53* mutation


Maintenance Phase (24 cycles)

Ublituximab every 2 cycles



AU2 efficacy after median follow up 2.5 years

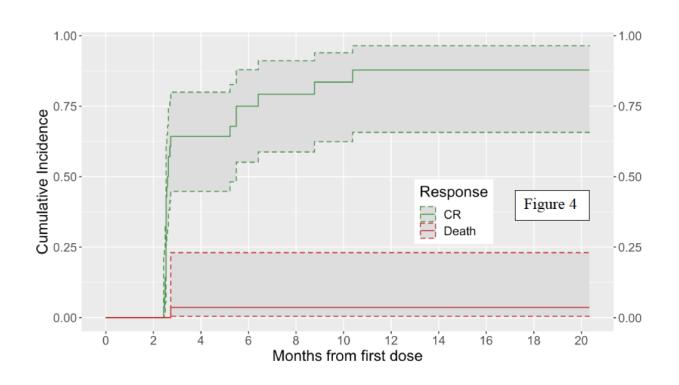


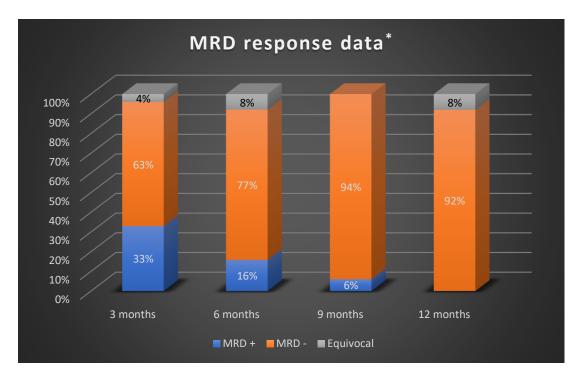
ORR 100% CR 100% uMRD (10⁻⁶) 73%

Venetoclax+Lenalidomide+Rituximab (VALOR) in de novo MCL

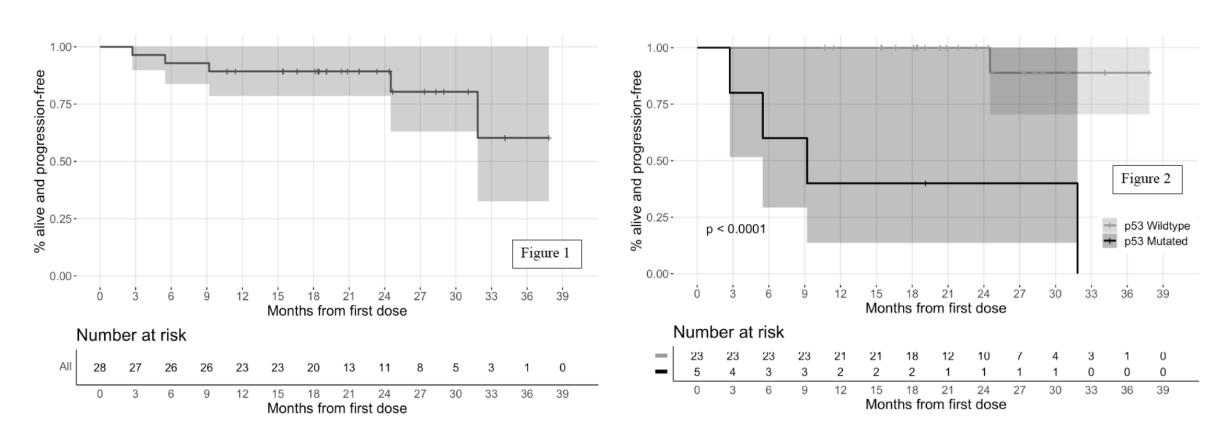
Patient characteristics

Characteristic	Patients (N =28)
VariantBlastoid/BlasticPleomorphic	4 (14%)2 (7%)
Ki-67 • <30% • ≥30%	8 (one not reported at COH)19
P53 statusDeletedMutated	 1 (had concurrent mutation) 4*
Cytogenetics at diagnosis 253	NormalAbnormal
Unfit for or ineligible for high dose chemotherapy	 3 patients Two patients for age/fitness One patient concurrent medical condition




Toxicities

AE Name	Any Grade	Grade >= 3
Neutrophil count decreased	85.7%(24)	75%(21)
Platelet count decreased	60.7%(17)	60.7%(17)
Anemia	50%(14)	32.1%(9)
Febrile neutropenia	14.3%(4)	14.3%(4)
Tumor lysis syndrome	14.3%(4)	14.3%(4)
Hypokalemia	28.6%(8)	10.7%(3)
White blood cell decreased	21.4%(6)	10.7%(3)
Lymphocyte count decreased	14.3%(4)	10.7%(3)
Diarrhea	75%(21)	7.1%(2)
Fatigue	71.4%(20)	7.1%(2)
Upper respiratory infection	25%(7)	3.6%(1)
Dysgeusia	42.9%(12)	0%(0)
Nausea	42.9%(12)	0%(0)
Headache	39.3%(11)	0%(0)
Bruising	28.6%(8)	0%(0)
Constipation	28.6%(8)	0%(0)
Pruritus	28.6%(8)	0%(0)
Abdominal pain	25%(7)	0%(0)
Rash maculo-papular	25%(7)	0%(0)


Response and MRD

Progression-free survival

2-year PFS = 89%

GLOVe in 1L high-risk MCL

Inclusion

- High risk features as classified by Jain et al. JCO 2020
 - Blastoid/Pleomorphic variants
 - Ki67≥50%
 - Presence of a TP53 mutation defined by either molecular testing or IHC
 - o del (17p) by FISH
 - complex karyotype
 - 3 or more cytogenetic abnormalities in addition to t(11:14)
 - High-risk MIPI score (≥6.2)
 - Bulky disease

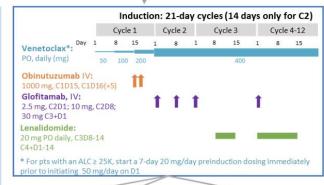
o **Exclusion**

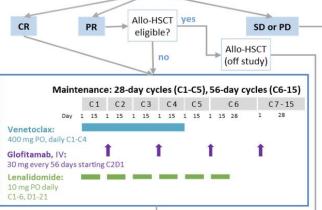
Prior systemic therapy excluding corticosteroids.

STUDY SCHEMA

High-risk newly diagnosed MCL Safety lead-in: 6-12 evaluable participants

Initiate Tumor Lysis Syndrome (TLS) Prophylaxis


(within 72 hours prior to Day 1)


Phase 2: 50 evaluable participants (incl. eligible lead-in pts)

Phase 2 single-arm, open label, multicenter study

Tumor Tissue

- Archival tissue, AND
- If applicable, leftover fresh biopsy from a standard of care procedure post-consent

Clinic Visits

Induction: C1D1, 8, 15; C2D1, D8:

Maintenance: C1D1, C2D1, then every other cycle.
End of Tx

Toxicity

Every Cycle Safety DLT evaluation period is C1D1 until 63 days post-first venetoclax dose).

TLS Monitoring

Venetoclax Ramp-up stage:

low/medium TLS risk: for 20, 50, and 100mg ramp-up doses, predose, 6-8 h, and 24 h; at subsequent ramp-up doses, predose only.

high TLS risk (monitoring while hospitalized): at 20, 50, and 100mg ramp-up doses, 4 h, 8 h, 12 h and 24h; at subsequent ramp-up doses, pre-dose, 6-8 h, and 24 h after dosing.

Cycle 2+: As clinically indicated Response:

(Lugano Classification)

Induction: end of C3, 6, 9 & 12 Maintenance: C9 and 15 & EOT and q3 months during follow-up

Correlative Blood Samples

Induction C1D15, C6D1. Maintenance C6, C9, C12, C15.

Completion of 15 cycles of maintenance therapy, disease progression, or otherwise meeting off-treatment criteria (Section 5.6)

Safety

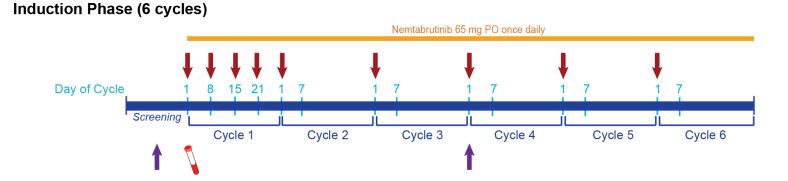
Until 30 days post-last dose.

Note: if the last cycle is maintenance C7-12 the safety follow-up will be 8 weeks post last dose.

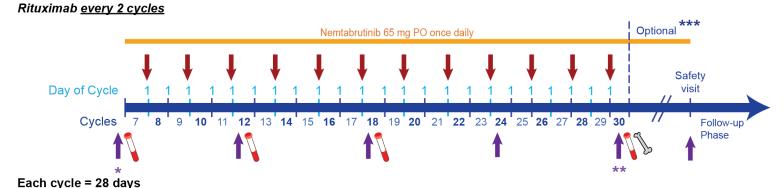
Response

Until progression/initiation of new anti-cancer therapy

R-nemta in de novo MCL


Rituximab Disease Correlative Blood

Inclusion


 Pretty much any patients with previously untreated MCL

Participating sites:

- COH Duarte
- COH Atlanta
- Northwestern University
- Cleveland Clinic

Maintenance Phase (24 cycles)

^{*}Participants with PR or CR at the end of Induction will be eligible to proceed to Maintenance

Participants may continue therapy with nemtabrutinib beyond 30 cycles if they have not achieved or maintained CR state at the end of 30 cycles of therapy

Summary: MCL

Targeted therapy with BTKi secured its role in frontline therapy for MCL ECHO is the preferred regimen for older patients

Most patients with MCL do not need consolidation with ASCT in first remission.

It is entirely unclear which patients, if any, need ASCT

Rituximab maintenance can prolong PFS in targeted era

In this context, ECHO regimen is a reasonable approach to use in the initial treatment of younger patients

Chemo-free regimens are coming fast and furious

ECHO – BR+acala improves PFS over BR

Triangle – No benefit to ASCT in era of BTKi. Rituximab maintenance improves PFS

Enrich – IR improves PFS & OS over RCHOP and less toxicity than BR in frontline

EA4151 – Minimal (if any) benefit to ASCT in era of BTKi