

ESMO-EHA Clinical Practice Guideline for Peripheral T-cell Lymphoma

Francesco d'Amore, MD, DMSc Department of Haematology, Aarhus University Hospital Department of Clinical Medicne, Aarhus University

Singapore Lymphoma Scientific Symposium 2025

ANNALS OF DRIVING INNOVATION IN ONCOLOGY

e-pub May25

DOI: 10.1002/hem3.70128

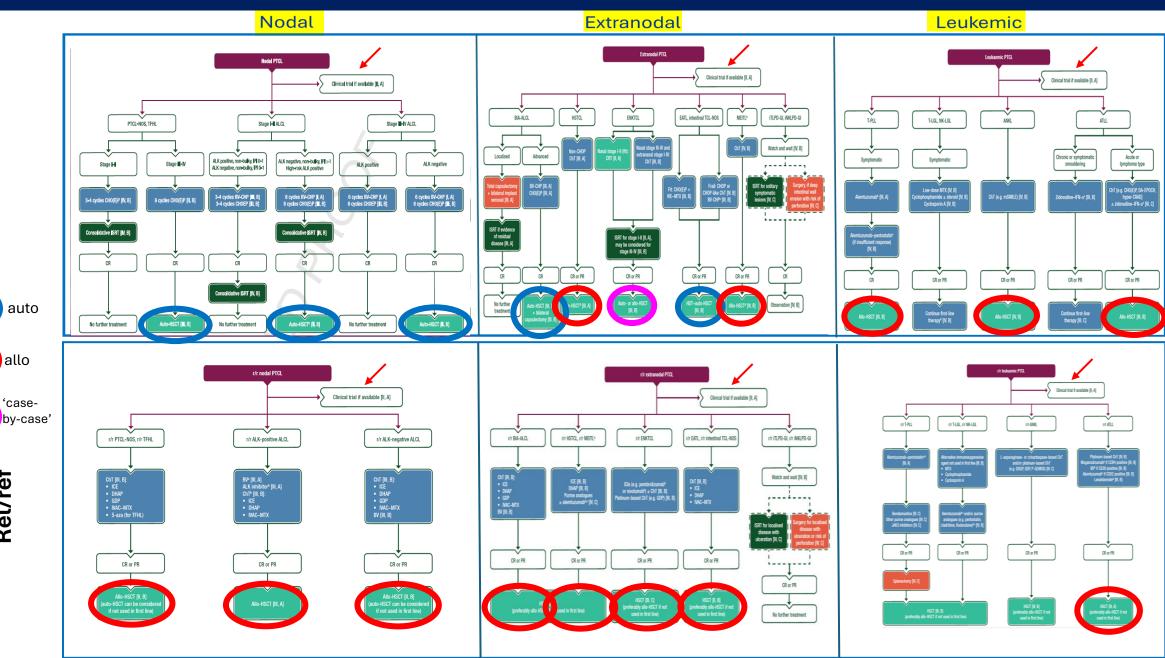
GUIDELINES - CONSENSUS-BASED

SPECIAL ARTICLE

Peripheral T- and natural killer-cell lymphomas: ESMO—EHA Clinical Practice Guideline for diagnosis, treatment and follow-up [★]

F. d'Amore^{1,2†}, M. Federico^{3‡}, L. de Leval⁴, F. Ellin^{5,6}, O. Hermine^{7,8}, W. S. Kim⁹, F. Lemonnier^{10,11}, J. S. P. Vermaat¹², G. Wulf¹³, C. Buske¹⁴, M. Dreyling¹⁵ & M. Jerkeman¹⁶, on behalf of the ESMO* and EHA Guidelines Committees*

Departments of ¹Haematology and ²Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark; ³CHIMOMO Department, University of Modena and Reggio Emilia, Emilia-Romagna, Italy; ⁴Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland; ⁵Department of Clinical Sciences, Lund University, Lund; ⁶Department of Internal Medicine, Kalmar County Hospital, Kalmar, Sweden; ⁷Department of Hematology, Université de Paris, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris; ⁸Imagine Institute, Hôpital Necker, INSERM U1163, Paris, France; ⁹School of Medicine, Sungkyunkwan University, Samsung Medical Center, Seoul, Korea; ¹⁰Lymphoid Malignancies Unit, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil; ¹¹Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, INSERM, Créteil, France; ¹²Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands; ¹³Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen; ¹⁴Institute of Experimental Cancer Research, Ulm Medical University, Ulm; ¹⁵Department of Medicine III, Ludwig Maximilian University, Munich, Germany; ¹⁶Department of Oncology, Skåne University Hospital, Lund, Sweden

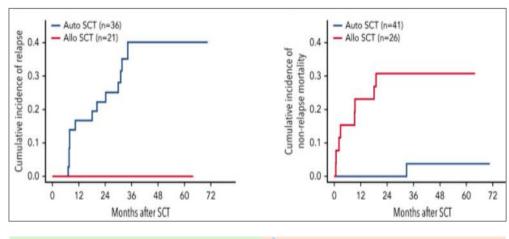

Peripheral T- and natural killer-cell lymphomas: ESMO-EHA Clinical Practice Guideline for diagnosis, treatment, and follow-up

Francesco d'Amore ^{1,2,^} Massimo Federico ^{3,^} Laurence de Leval ⁴		
Fredrik Ellin ^{5,6} Olivier Hermine ^{7,8} Won Seog Kim ⁹ François Lemonnier ^{10,11}		
Joost S. P. Vermaat ¹² Gerald Wulf ¹³ Christian Buske ¹⁴ Martin Dreyling ¹⁵		
Mats Jerkeman ¹⁶ on behalf of the ESMO and EHA Guidelines Committees		

Disclosures

- Institutional fees for the implementation of a First-in-Human clinical trial from Genmab
- Institutional fees from **Servier** for the implementation, as coordinating international PI, of a Nordic clinical trial on PTCL
- Institutional fees as advisory board member for Frost AB
- Non-remunerated member of the Scientific Committee of the European School of Haematology

ESMO-EHA CPG PTCL >> Overview



Rel/ref

Upfront Auto or Allo HSCT in PTCL? The German-French AATT trial

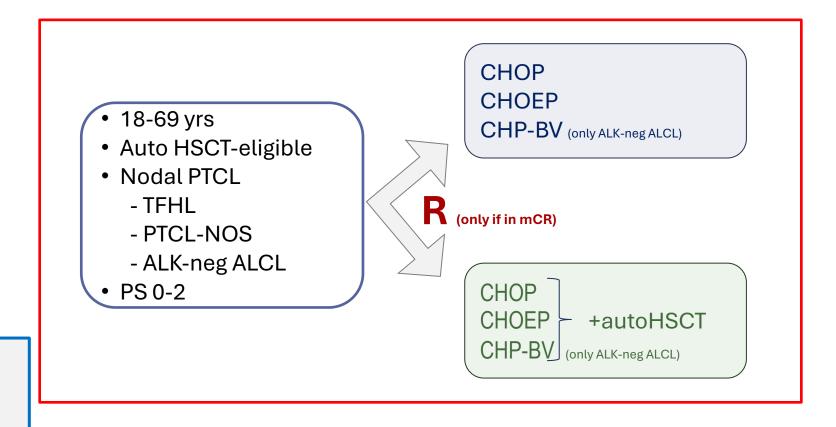
Primary analysis Schmitz N et al. Blood 2021; 137(19):2646–2656

	Auto	Allo	
3y EFS	38%	43%	ns
OS	70%	57%	ns
TRM	0%	31%	
REL	36%	0%	

AUTO: Lower TRM Higher RR

ALLO: Lower RR Higher TRM

Long-term follow up	Tournilhac O et al. JCO 2024; 42(32):3788-379
---------------------	---


	Auto	Allo	
7y EFS	34%	38%	ns
OS	61%	55%	ns
TRM	3%	31%	
REL	55%	8%	

Authors' conclusions:

- If a Tx consolidation is chosen upfront, auto Tx should be the modality of choice in chemosensitive Tx eligible (CPG25: ...in nodal PTCL and some extranodal entities)
- AlloSCT is the treatment of choice for younger, Tx-eligible pts with r/r PTCL
- AlloSCT is generally <u>not</u> recommended as part of firstline consolidation (CPG25:...except for HSTCL and MEITL, where alloTx consolidation is recommended in chemosensitive pts)

Upfront auto-HSCT or 'No further treatment' after mCR in nodal PTCL?

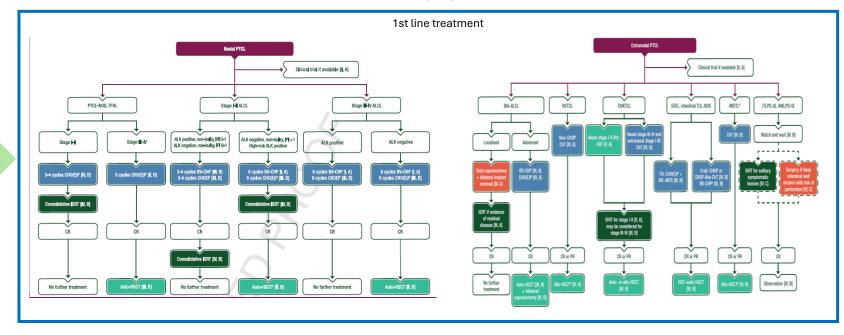
The TRANSCRIPT trial



- Clinicaltrials.gov: NCT05444712
- Started inclusion: 8/22
- PI: dr. Bachy (France)
- Primary end-point: PFS
- Enrollment goal: 204 pts
- Expected completion: 4/28

Compared to ESMO PTCL CPG 2015 >> Increased complexity

2008 WHO 4th ed.


2015

Chemosensitive (PR, CR) and transplant eligible

Stage I-II RT (<50 Gy) + chemon Stage II-IV Chemon (+/- RT)

AutoSCT

2025

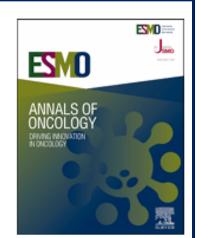
CHOEP14x6

ESMO CPG 2025 for all lymphomas, incl PTCL (only nodal)

Do NOT confuse the ESMO-EHA PTCL CPG 2025 (May) with the ESMO 'all lymphomas" CPG 2025 (Aug):

- 1) Text for PTCL recommendations originating the ESMO-EHA CPG for PTCL
- 2) Only nodal PTCL included
- 3) Includes less background information on PTCL than the PTCL-specific guideline.

Journal Pre-proof epub August 2025


Lymphomas: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up[†]

T.A. Eyre, K. Cwynarski, F. d'Amore, L. de Leval, M. Dreyling, D.A. Eichenauer, A.J.M. Ferreri, E. Giné, M.J. Kersten, M. Ladetto, L. Specht, C. Thieblemont, J. Walewski, E. Zucca, M. Jerkeman, on behalf of the ESMO Guidelines Committee

PII: S0923-7534(25)00911-1

DOI: https://doi.org/10.1016/j.annonc.2025.07.014

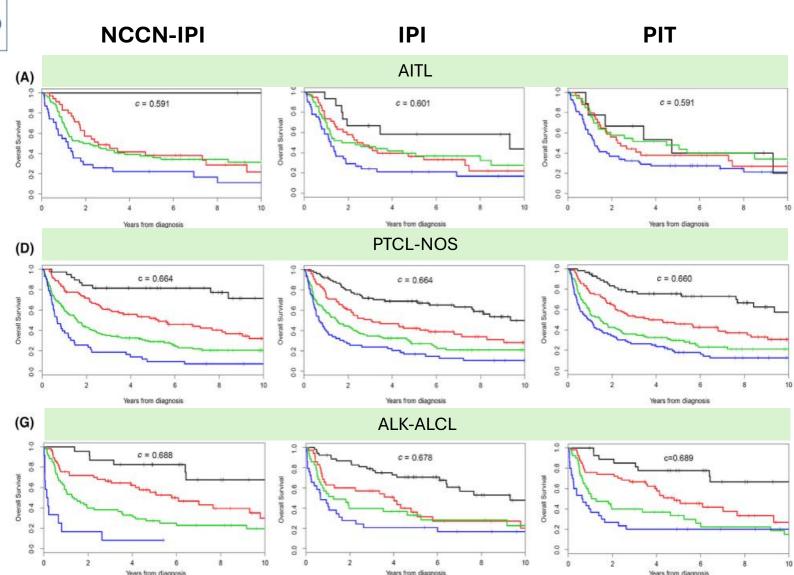
Reference: ANNONC 1872

ESMO-EHA CPG PTCL >> Staging and Risk Assessment - General

Selected recommendation points

- At diagnosis, a PET-CT is the preferred imaging modality for all nodal and extranodal (non-leukaemic) PTCLs [I, B].
- In all cases, a BM biopsy is recommended for accurate staging [V, A].
- Rebiopsy is recommended at relapse or progression [V, A].
- For nodal PTCL, the International Prognostic Factor Index is still the preferred prognostic tool [IV, B].

Prognostic indices in PTCL


Correspondence Free Access

Comparison of the NCCN-IPI, the IPI and PIT scores as prognostic tools in peripheral T-cell lymphomas

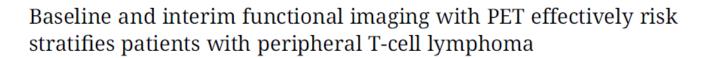
Fredrik Ellin 減, Matthew J. Maurer, Line Srour, Umar Farooq, Mats Jerkeman, Joseph M. Connors, Karin E. Smedby, N. Nora Bennani, Stephen M. Ansell, Graham W. Slack ... See all authors 🗸

First published: 11 March 2019 | https://doi.org/10.1111/bjh.15859 | Citations: 15

"Based on our results it seems reasonable to recommend continued use of the IPI for stratification and adjustments in clinical studies of ALK-neg ALCL and PTCL NOS until more specific prognostic biomarkers are available."

ESMO-EHA CPG PTCL >> RESPONSE AND FOLLOW-UP

- A diagnostic imaging interim evaluation can be carried out to assess chemosensitivity (optional) [II, B].
- Interim PET/CT response has outcome-predictive value in nodal PTCL [II, B].
- Diagnostic imaging (preferably PET-CT) can be repeated at EOT along with a BM biopsy, if initially involved [II, B].
- For pts in ongoing CR, **follow-up** can be **discontinued after 3 years** in non-transplanted asymptomatic patients [III, B] and after **5 years in** asymptomatic **patients who have received auto-HSCT** (e.g. emerging signs of myelodysplasia) [III, B].
- Routine surveillance with PET-CT or diagnostic CT cannot be recommended for patients with CR [III, D].
- **EBV DNA monitoring** is **recommended** for patients with **ENKTCL** [II, A] and can be considered in patients with nodal PTCL and circulating EBV DNA at diagnosis [IV, C].


Key Points

- reported previously, outcome remained unafiPET-based by fected treatment changes
- On multivariable analy-sis, only TMTV and independently response predicted survival. Due to numbers small and events, PET did not predict survival ALK-pos lymphoma.

Interim PET in PTCL

REGULAR ARTICLE

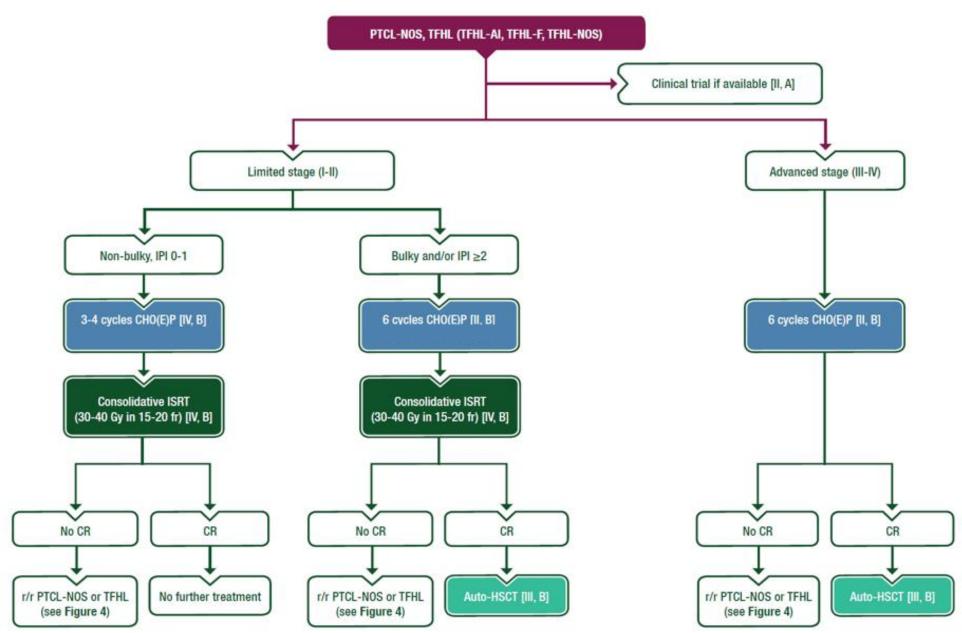
Neha Mehta-Shah, 1,2,* Kimiteru Ito, 3,* Kurt Bantilan, Alison J. Moskowitz, Craig Sauter, Steven M. Horwitz, and Hei höder³ University

1 Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; 2 Division of Oncology, Department of Medicine, Washi in St. Louis, St. Louis, MO; and ³Molecular Imaging and Therapy Service, Department of Radiology, and ⁴Bone Marrow Transplant Service, Department of Me Memorial Sloan Kettering Cancer Center, New York, NY

22 JANUARY 2019 x VOLUME 3, NR 2

Baseline and interim PET-based outcome prediction in peripheral T-cell lymphoma: A subgroup analysis of the PETAL

trial


Christine Schmitz, Jan Rekowski, Stefan P. Müller, Bernd Hertenstein, Christiane Franzius, Arnold Ganser, Frank M. Bengel, Frank Kroschinsky, Jörg Kotzerke, Paul La Rosée, Martin Freesmeyer, Heinz-Gert Hoeffkes, Andreas Hertel, Dirk Behringer, Rolf Mesters, Matthias Weckesser, Stefan Mahlmann, Uwe Haberkorn, Uwe Martens, Gabriele Prange-Krex, Winfried Brenner, Aristoteles Giagounidis, Regina Moeller, Volker Runde, Matthias Sandmann, Hubertus Hautzel, Stefan Wilop, Thomas Krohn, Heinz Dürk, Michael Heike, Ferras Alashkar, Marcus Brinkmann, Guido Trenn, Dietmar Wacker, Christiane Kreisel-Büstgens, Helga Bernhard, Gerhard Heil, Rolf Larisch, Lars Kurch, Karl-Heinz Jöckel, Dieter Hoelzer, Wolfram Klapper, Ronald Boellaard, Ulrich Dührsen 🔀 Andreas Hüttmann ... See fewer authors ^

First published: 18 February 2020 https://doi.org/10.1002/hon.2697 | Citations: 17

Key Points

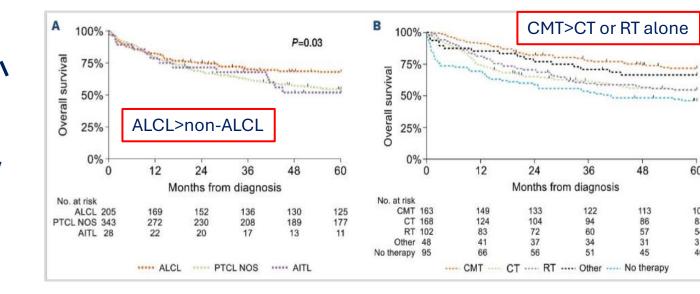
- In peripheral T-cell lymphomas treated upfront, baseline total metabolic tumor volume and interim 5-point score are prognostic.
- Interim PET response (assessed by 5-point score) further risk stratifies patients with low and high baseline clinical risk scores.

1st line treatment of PTCL-NOS and TFHL

d'Amore F et al. Ann Oncol. 2025;36(6):626-644.& Hemasphere. 2025;9(5):e70128.

Limited-stage nodal PTCL

► Haematologica. 2023 Oct 5;109(4):1163–1170. doi: 10.3324/haematol.2023.283174 🖸

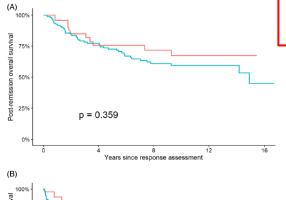

only st

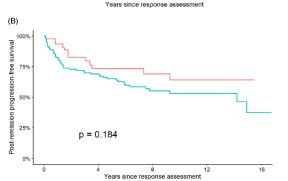
Outcome of combined modality treatment in first-line for stage I(E) peripheral T-cell lymphoma; a nationwide population-based cohort study from the Netherlands

Frederik O Meeuwes ^{1,2}, Mirian Brink ³, Wouter Plattel ², Marjolein WM van der Poel ⁴, Marie José Kersten ⁵,

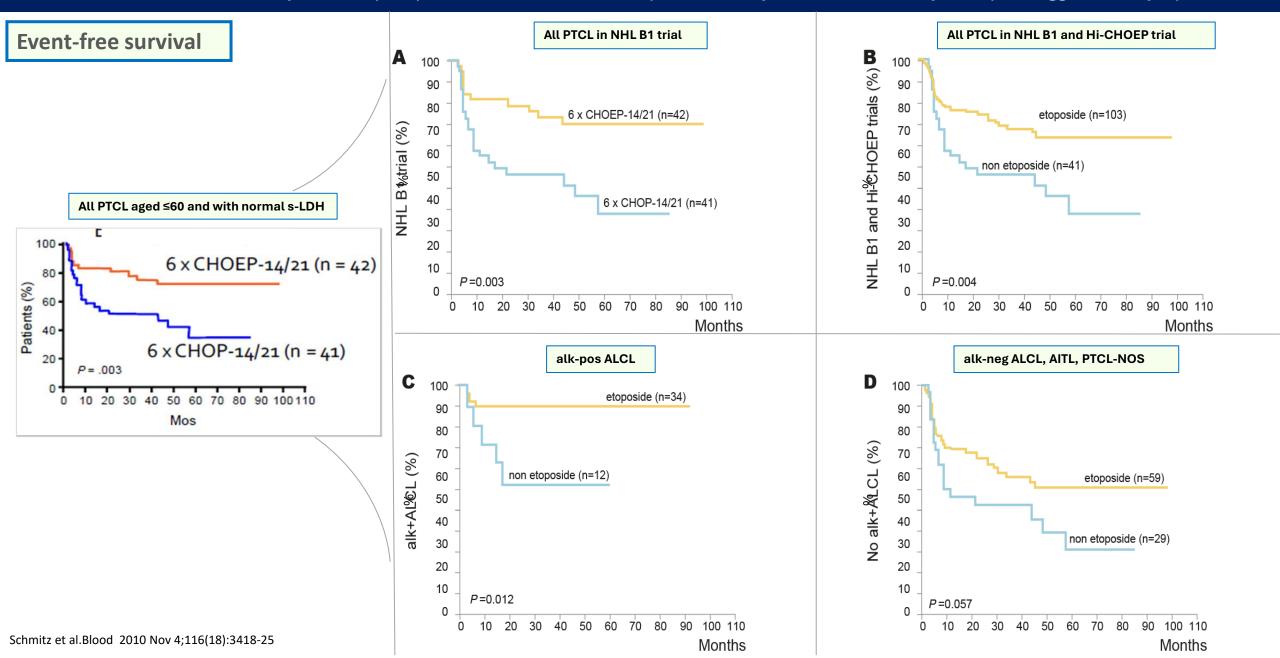
Mariëlle Wondergem ⁵, Lara Böhmer ⁶, FJ Sherida H Woei-A-Jin ⁷, Otto Visser ⁸, Rimke Oostvogels ⁹, Patty M

Jansen ¹⁰, Karen J Neelis ¹¹, Anne PG Crijns ¹², Laurien A Daniëls ¹³, Tjeerd JF Snijders ¹⁴, Joost SP Vermaat ¹⁵,

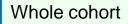

RESEARCH ARTICLE

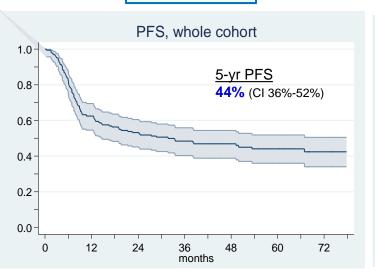

Am J Hematol. 2023;98:388-397

Outcome of limited-stage peripheral T-Cell lymphoma after CHOP(—like) therapy: A population based study of 239 patients from the Nordic lymphoma epidemiology group

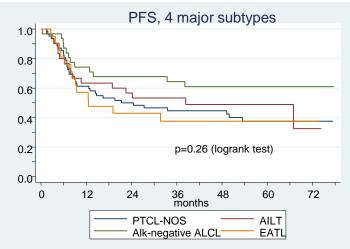


In non-ALK+ALCL pts, those with >2 IPI factors had a 5yOS of 20%

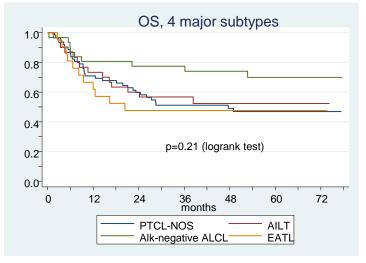

There was no difference in treatment-specific outcome after 3–4 cycles vs. 6–8 cycles of CHOP(like) ±RT

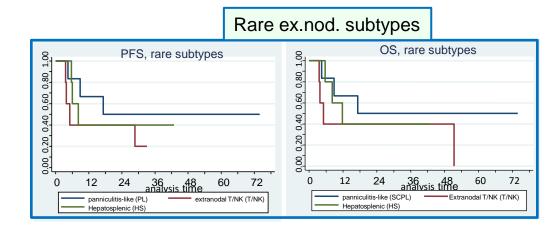

The addition of etoposide to CHOP - The German experience in aggressive lymphomas

'Post-hoc' PTCL subset analysis from prospective randomized trials performed by the German Study Group on Aggressive Lymphomas



NLG-T-01: Etoposide and auto HSCT – whole cohort and subtypes (no ALK+ ALCL)




Major subtypes

Histology	5-yr OS	95% CI	5-yr PFS	95% CI
ALCL	70 %	50%-83%	61%	42%-76%
AILT	52 %	33%-69%	49 %	30%-65%
EATL	48%	26%-67%	38 %	18%-57%
PTCL-NOS	47%	34%-59%	38 %	25%-50%

Etoposide and autoHSCT: Population-based data from the Swedish lymphoma registry

CLINICAL TRIALS AND OBSERVATIONS

Real-world data on prognostic factors and treatment in peripheral T-cell lymphomas: a study from the Swedish Lymphoma Registry

Fredrik Ellin, 1,2 Jenny Landström, 2 Mats Jerkeman, 3 and Thomas Relander 3

BLOOD, 4 SEPTEMBER 2014 • VOLUME 124, NUMBER 10

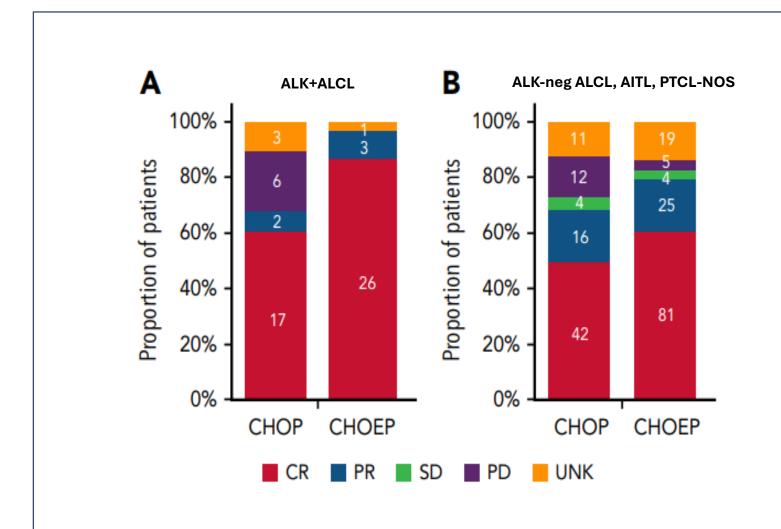
Key Points

- Population-based data show a favorable outcome with upfront autologous stem cell transplantation in PTCL.
- The addition of etoposide to CHOP was associated with favorable PFS in patients
 ≤60 years with PTCL.

N=755 pts with non-leukemic, non-cutaneous PTCL

In an intention-to-treat analysis in 252 nodal PTCL and EATL pts (excluding alk–positive ALCL), upfront auto SCT was associated with a superior OS (HR 0.58; P5 .004) and PFS (HR 0.56; P5 .002) compared with pts treated without auto-SCT.

The addition of etoposide to CHOP resulted in superior PFS, but only borderline for OS, in pts <60 years (HR 0.49; P 5 .008 and HR 0,58; P5 .052, respectively).

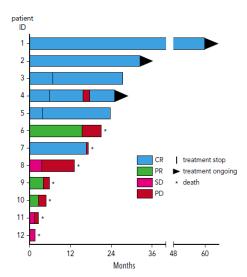

Research Paper

The addition of etoposide to CHOP is associated with improved outcome in ALK+ adult anaplastic large cell lymphoma: A Nordic Lymphoma Group study

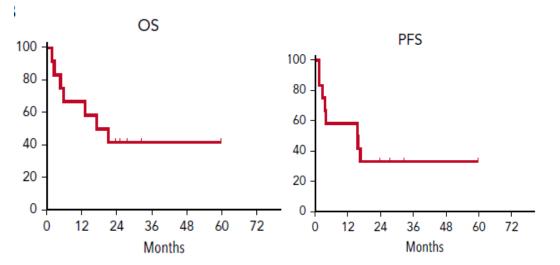
Henrik Cederleuf Martin Bjerregård Pedersen, Mats Jerkeman, Thomas Relander, Francesco d'Amore, Fredrik Ellin

- The median age of the cohort was 40 y (range 18–85). The 5-y OS and PFS was 78% and 64%, respectively.
- Age stratification of the patients demonstrated, efter adjustment for risk factors, an association between treatment with CHOEP and improved OS for patients aged 41-65 y, (HR = 0.38, P = 0.047).

Etoposide and autoHSCT: Population-based data from the Dutch Cancer registry

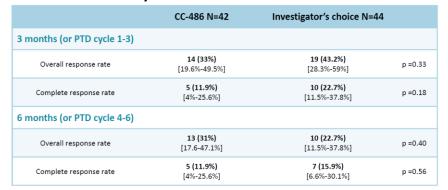


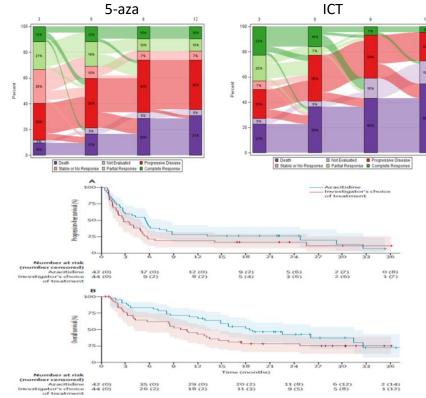
KEY POINTS


- In advanced-stage T-cell lymphoma, the addition of etoposide to CHOP improved OS in ALK⁺ ALCL but not in ALK⁻ ALCL, AITL, or PTCL NOS.
- Consolidation with ASCT in the first-line setting significantly increased OS in ALK⁻ ALCL, AITL, and PTCL NOS.

Brink M, et al. Blood. 2022 Sep 1;140(9):1009-1019.

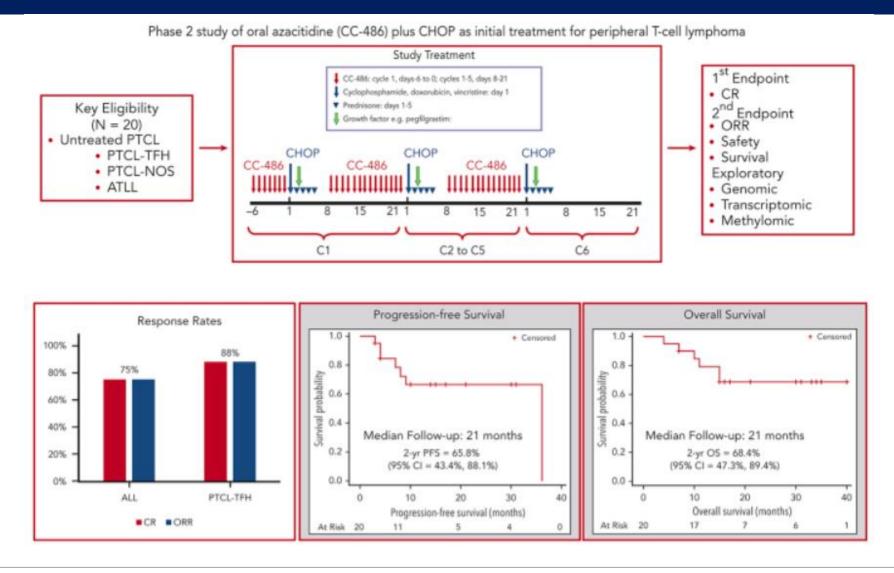
New drugs: 5-aza in r/r TFHL




- N = 12 patients with stage III/IV AITL
- 5-azacytidine (median of 5.5 cycles)
- ORR 75%: CR 6/12; PR 3/12; SD 3/12
- Median PFS 15mo
- 5 out of 12 pts associated myeloid disorder
- (MDS/CMML)

Lemonnier F et al. Blood 2018

ORACLE study: oral 5-aza vs ICT (Bendamustine, Gemcitabine or Romidepsin)



Primary EP: PFS

- 5-aza >>5.6 mo (95%Cl, 2.66-8.11)
- ICT >> 2.8 mo (95%Cl, 1.87-4.83) mo
- strat. log-rank test p=0.0421), HR 0.634 (95%CI, 0.38; 1.07),
- Optimistic hypothesis of PFS improvement (p<0.025) not met

Upfront CHOP + oral 5-Aza (C486) in nodal PTCL (non-ALCL)

This regimen is being further evaluated in the ALLIANCE randomized ph 2 study, stratifying chemotherapy based on age (CHOP for >60y, CHOEP for \leq 60y), to compare: $\frac{1}{2}$ oral azacitidine plus CHOP/or CHOEP vs $\frac{1}{2}$ PI3K inhibitor duvelisib plus CHOP/or CHOEP vs $\frac{1}{2}$ CHOP/or CHOEP in CD30⁻ PTCL (NCT04803201).

Chidamide + s.c. 5-aza + CHOP in newly diagnosed PTCL

45 pts with 'de novo' PTCL (mostly AITL) included over a 3y period (3/21 – 12/23)

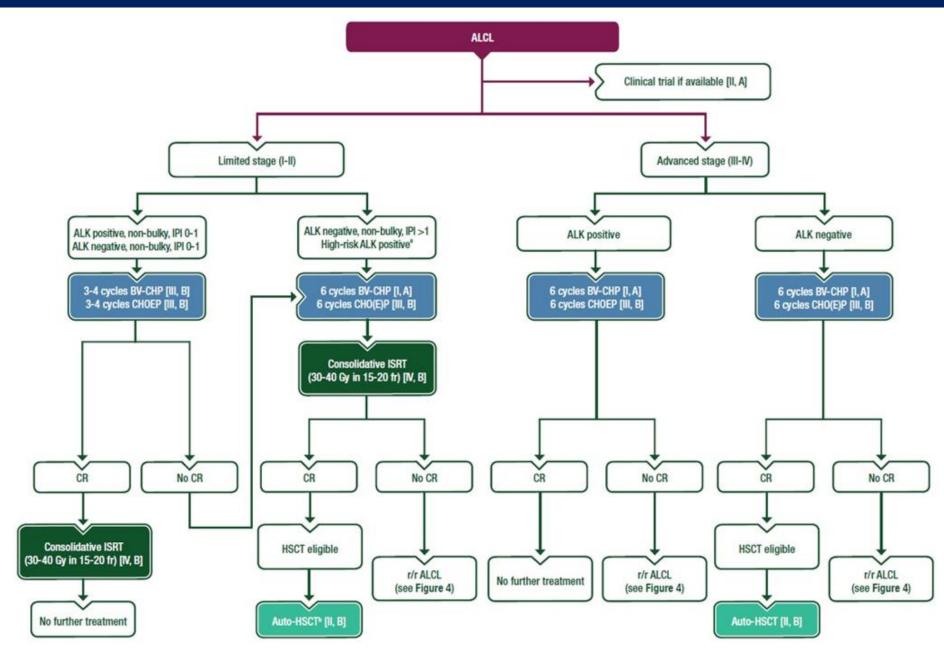
The Chi+5-Aza-CHOP regimen

- CHOPD 1-5
- 5-Aza100mg SC...... D 1-5
- Chidamide 20mg x 2 q week of each cycle (cycle length: 3 w)

Pts in PR/CR after 4-6 cycles proceed to auto HSCT followed by oral chidamide 20mgx2 q week as maintenance

Primary end-point: ORR

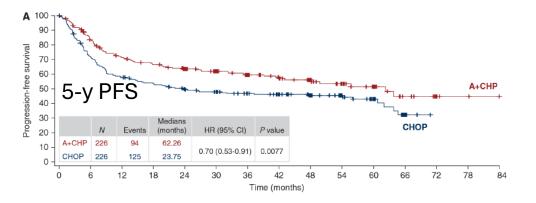
Secondary end-points: CR rate, safety parameters, OS, PFS

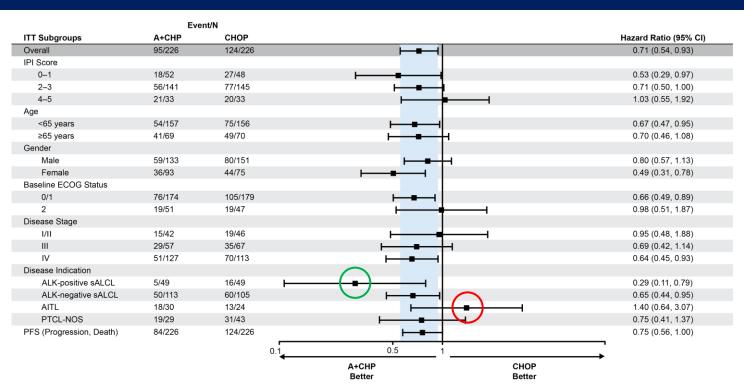

41 pts received the Chi+AZ-CHOP regimen for at least 2 cycles (median 5)

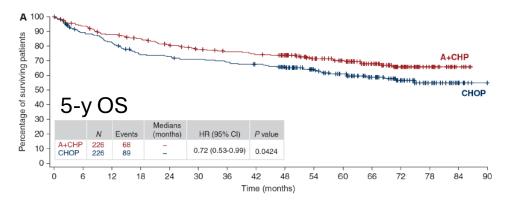
- ORR 85.3% with CR 48.7%
- 5 PD while on treatment,
- 17 pts received ASCT; post ASCT ORR was 100% and CR rate 88.2%

In patients with AITL (n=23), post-induction ORR was 86.9% and CR 60.8%

No. of patients, %
45 (25-73)
16 (35.6)
29 (64.4)
25 (55.6)
20 (44.4)
7 (15.6%)
<mark>27 (60%)</mark>
4 (8.9%)
2 (4.4%)
5 (11.1%)
40 (88.9)
6 (13.3)
17 (62.2)


1st line treatment of ALK-pos and ALK-neg ALCL

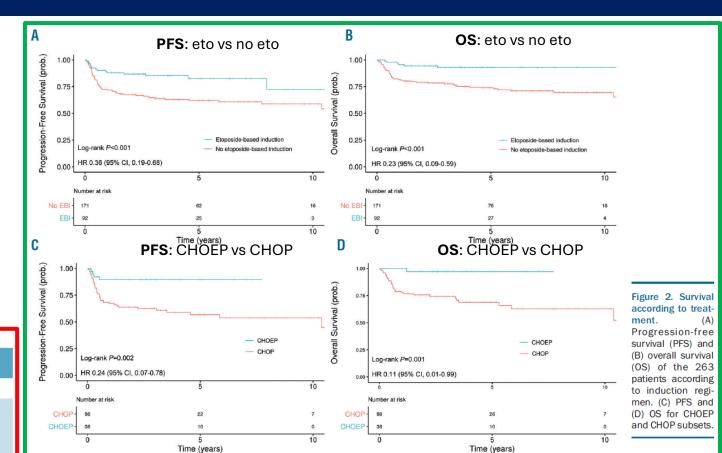



ECHELON-2

	A+CHP (N=226)	CHOP (N=226)
Stage III/IV disease, n (%)	184 (81)	180 (80)
Disease diagnosis,	n (%)	
sALCL	162 (72)	154 (68)
ALK+	49 (22)	49 (22)
ALK-	113 (50)	105 (46)
PTCL-NOS	29 (13)	43 (19)
AITL	30 (13)	24 (11)
ATLL	4 (2)	3 (1)
EATL	1 (0)	2 (1)

ALCL-driven

Etoposide and ALK+ ALCL: Pooled analysis of 263 pts enrolled in 6 clinical trials


LETTERS TO THE EDITOR

David Sibon et al.

haematologica 2019; 104:e562

ALK-positive anaplastic large-cell lymphoma in adults: an individual patient data pooled analysis of 263 patients

Table 1. Demographics and clinical c	haracteristics of adults with sy	stemic ALK-positive ALCL.		
Characteristic	All patients	No etoposide during induction, n (%)	Etoposide during induction, n (%)	P
No. of patients	263	171	92	
Study				< 0.0001
LYSA-1	48 (18.3)	48 (28.1)	0	
LYSA-2	10 (3.8)	3 (1.8)	7 (7.6)	
DSHNHL	78 (29.7)	21 (12.3)	57 (62)	
Japan	44 (16.7)	37 (21.6)	7 (7.6)	
IPTCLP	74 (28.1)	54 (31.6)	20 (21.7)	
Mayo Clinic	9 (3.4)	8 (4.7)	1 (1.1)	
Cohort				< 0.0001
LYSA	58 (22.1)	51 (29.8)	7 (7.6)	
DSHNHL	78 (29.7)	21 (12.3)	57 (62)	
Japan	44 (16.7)	37 (21.6)	7 (7.6)	
IPTCLP-Mayo Clinic	83 (31.6)	62 (36.3)	21 (22.8)	
Age				
Median (years)	34	34	35	0.978
Range (years)	18-76	18-76	19-71	
≤ 60 years	232 (88.2)	146 (85.4)	86 (93.5)	0.082

AutoHSCT after BV-CHP – added efficacy?

Etoposide added to BV-CHP (CHEP-BV) – added efficacy?

Key Points

Consolidative SCT should be considered in patients with CD30⁺PTCL in a CR following frontline treatment with A+CHP.

STIMULUS REPORT

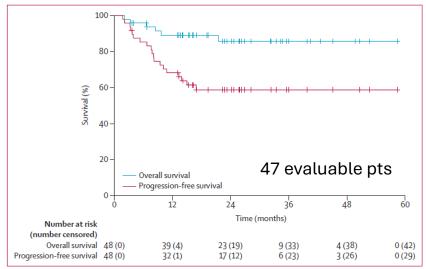
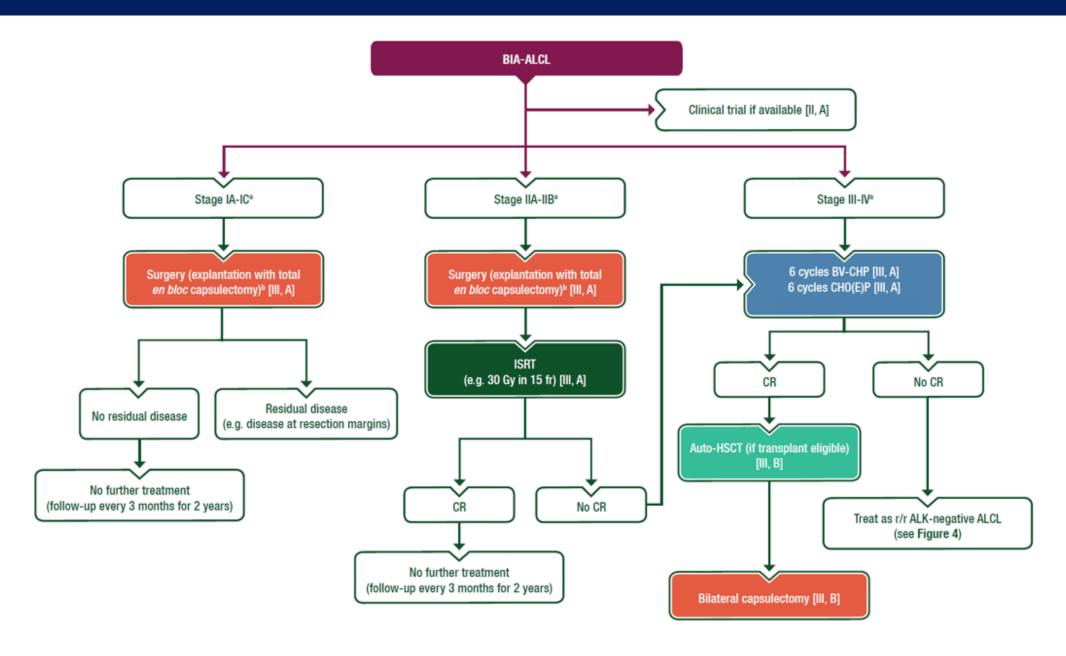
Role of stem cell transplant in CD30⁺ PTCL following frontline brentuximab vedotin plus CHP or CHOP in ECHELON-2

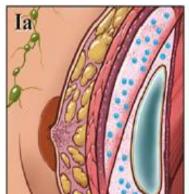
Kerry J. Savage, ¹ Steven M. Horwitz, ² Ranjana Advani, ³ Jacob Haaber Christensen, ⁴ Eva Domingo-Domenech, ⁵ Giu: Franck Morschhauser, ⁷ Onder Alpdogan, ⁸ Cheolwon Suh, ⁹ Kensei Tobinai, ¹⁰ Andrei Shustov, ¹¹ Marek Trneny, ¹² Sa Pier Luigi Zinzani, ¹⁴ Lorenz Trümper, ¹⁵ Tim Ilidge, ^{16,17} Owen A. O'Connor, ¹⁸ Barbara Pro, ¹⁹ Harry Miao, ²⁰ Veronica

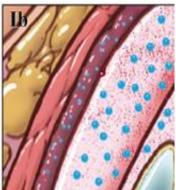
- Exploratory subgroup's analysis of ECHELON-2 pts on the impact of auto SCT on PFS in pts from the ECHELON-2 trial.
- PTCL pts with ALCL and non-ALCL, who were in CR after frontline treatment with BV-CHP or CHOP were included.
- The median PFS follow-up was 47.57 months. The PFS HR was 0.36, reflecting a 64% reduction in the risk of a PFS event in patients who underwent SCT compared to those who did not.
- The median PFS in patients who underwent SCT was not reached, vs 55.66 months in patients who did not undergo SCT.
- PFS results favored the use of SCT in both ALK- ALCL and non-ALCL subgroups.
- These data support the consideration of consolidative SCT in patients with CD30+PTCL who achieve CR following treatment with A+CHP.

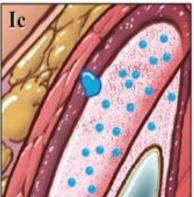
Brentuximab vedotin plus cyclophosphamide, doxorubicin, etoposide, and prednisone followed by brentuximab vedotin consolidation in CD30-positive peripheral T-cell lymphomas: a multicentre, single-arm, phase 2 study

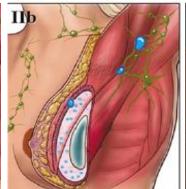
Herrera A et al. Lancet Haematol 2024;11:e671-81

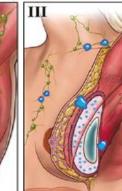



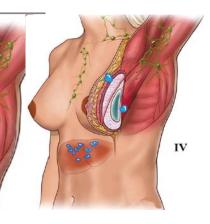

Figure 2: Progression-free and overall survival in all treated participants


- Median foll-up: 25 mo
- P-EP: >>CR rate 79%, (87% in ALCL and 75% in non-ALCL pts)
- Overall 2-y PFS and OS: 59% (CI95% 43-71) and 86% (CI95% 71-93), respectively
- Best outcomes in BV-CHEP + autoHSCT (+ postTx BV consolidation)


1st line treatment of BIA-ALCL


BIA-ALCL – TNM staging

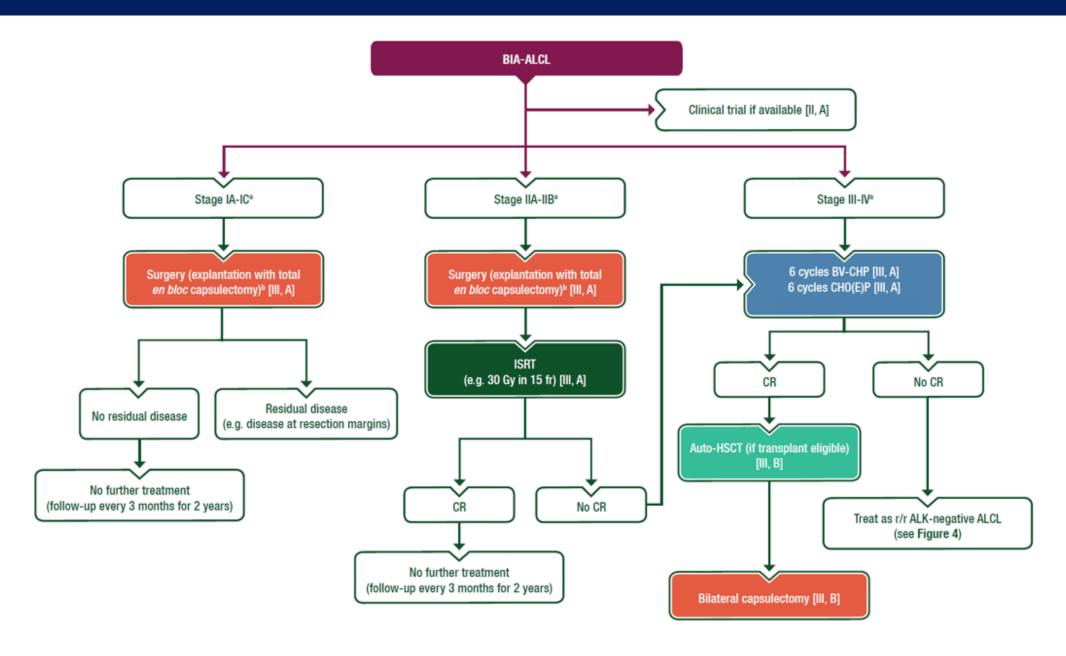




Clemens M et al, JCO 2016 – [Am Assoc Plast Surg]

Table 1. Proposed TNM Staging for Breast Implant–Associated Anaplastic Large-Cell Lymphoma

	Large-Cell Lymphoma
TNM or Stage Designation	Description
T: tumor extent	
T1	Confined to effusion or a layer on luminal side of capsule
T2	Early capsule infiltration
T3	Cell aggregates or sheets infiltrating the capsule
T4	Lymphoma infiltrates beyond the capsule
N: lymph node	
NO	No lymph node involvement
N1	One regional lymph node (+)
N2	Multiple regional lymph nodes (+)
M: metastasis	
M0	No distant spread
M1	Spread to other organs/distant sites
Stage	
IA	T1N0M0
IB	T2N0M0
IC	T3N0M0
IIA	T4N0M0
IIB	T1-3N1M0
III	T4N1-2M0
IV	TanyNanyM1


Turton P et al, BJH 2021 (ad. from Clemens M) - UK

	Description of lymphoma cells		
T = Tur	nour extent (penetration of capsule)		
T1	Only in the effusion or on luminal side of the capsule	1A	T1N0M0
T2	Superficial infiltration of the luminal side of the capsule	1B	T2N0M0
T3	Cell aggregates/sheets penetrate the capsule	1C	T3N0M0
T4	Cells infiltrate beyond the capsule	2A	T4N0M0
$N = N_0$	de extent		
N0	No lymph node involvement		
N1	One local/regional node involved	2B	T1-3N1M0
N2	More than one local/regional node involved	3	T4N1-2M0
$M = M\epsilon$	etastatic disease		
M0	No involvement of distant sites		
M1	Disease present at distant sites	4	T1-4N0-2M1

ESMO-EHA CPG PTCL 2025 (ad. from Clemens M & Turton P

TNM	Description of lymphoma extent	BIA-ALCL	TNM stage
		stage	counterpart
T [tumo	ur extent (penetration of capsule)]	•	
T1	Only in the effusion or on luminal side of the	IA	T1 N0 M0
	capsule		
T2	Our of sight infiltration of the housing boile of the	IB	T2 N0 M0
12	Superficial infiltration of the luminal side of the	ID	12 NO MO
	capsule		
T3	Cell aggregates or sheets penetrate the capsule	IC	T3 N0 M0
	och aggregates er sheets penetrate are capetile		101101110
T4	Cells infiltrate beyond the capsule	IIA	T4 N0 M0
N (node	extent)		
NO	No homele wards investorment		
N0	No lymph node involvement		
N1	One local or regional node involved	IIB	T1-3 N1 M0
N2	More than one local or regional node involved	III	T4 N1-2 M0
M (meta	static disease)		
M0	No involvement of distant sites		
M1	Disease present at distant sites	IV	T1-4 N0-2 M1

1st line treatment of BIA-ALCL

1st line treatment of BIA-ALCL

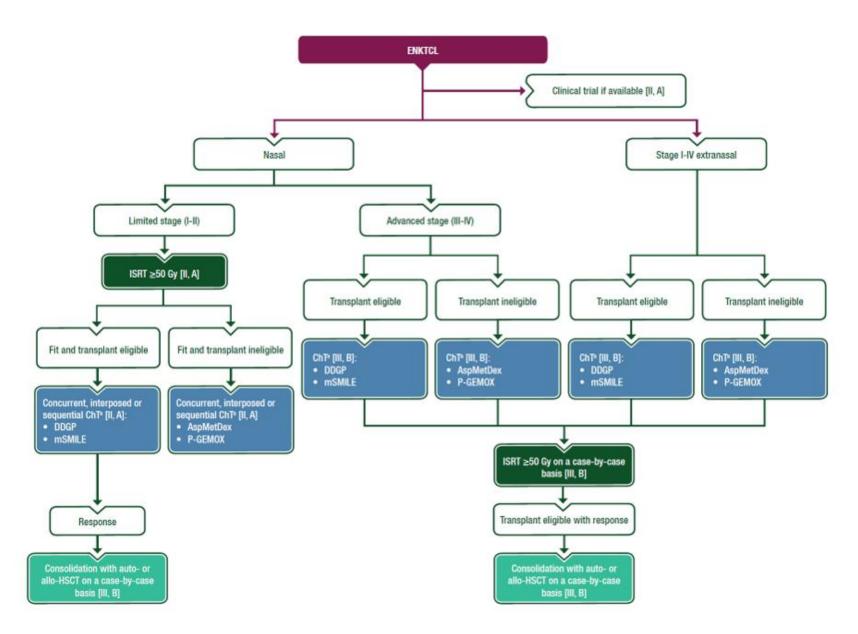
- A multidisciplinary approach is recommended for diagnostic assessment, staging and treatment planning [III, A].
- Total capsulectomy with removal of the breast implant and excision of any associated mass is recommended for patients with no signs of further disease dissemination [III, A]
- A representative biopsy (excision preferred) should be obtained if suspicious regional lymph nodes are found [III, A].
- Removal of the contralateral implant is recommended, particularly if textured [III, A].
- Mastectomy is not recommended [IV, D].
- ISRT (e.g. 30 Gy in 15 fractions) is recommended following surgery in adapted TNM stage IIA-IIB and in stage IA-IC if there is evidence of residual disease [III, A].
- Six cycles of BV-CHP, CHOP or CHOEP are recommended for patients with residual disease following ISRT and those with advanced stage (stage III-IV) [III, A].
- Auto-HSCT can be considered in patients with advanced stage responding to ChT (as in systemic ALK- ALCL) [III, B].

Association of BRCA1/2 and/or P53 gene mutations and BIA-ALCL

Letter to Blood

10 SEPTEMBER <mark>2020</mark> | VOLUME 136, NUMBER 11

TO THE EDITOR:


Increased prevalence of *BRCA1/2* mutations in women with macrotextured breast implants and anaplastic large cell lymphoma of the breast

Mintsje de Boer,¹ Michael Hauptmann,².³ Nathalie J. Hijmering,⁴ Carel J. M. van Noesel,⁵ Hinne A. Rakhorst,⁴ Hanne E. J. Meijers-Heijbos Jan Paul de Boer,⁴ René R. W. J. van der Hulst,¹ Daphne de Jong,⁴* and Flora E. van Leeuwen².* Adlard J, Burton C, Turton P. Increasing evidence for the association of breast implant-associated anaplastic large cell lymphoma and Li Fraumeni syndrome. *Case Rep Genet*. 2019;2019:5647940.

Statement from the American Association of Plastic Surgeons Consensus on BIA-ALCL (Plast Reconstr Surg; 154: 473, 2024.)

- Genomic studies have shown that patients with BIA-ALCL, in general, demonstrate an above average accumulation of chromosomal and genetic abnormalities.
- Therefore, physicians should be aware of associations with concomitant neoplasia, as in the case of patients with Li Fraumeni syndrome (germline *TP53* mutations) and patients who are *BRCA1/2* carriers.
- Therefore, predisposing genetic factors, such as BRCA and p53 abnormalities, may be additional
 contraindications to the use of textured implants.
- Further clinical research is required for more detailed risk stratification with additional outcomes analyses before a broad genetic testing of BIA-ALCL patients can be recommended.

1st line treatment of ENKTCL

Check-point protein inhibition in ENKTL

THE LANCET Haematology

ARTICLES · Volume 11, Issue 5, E336-E344, May 2024

First-line sintilimab with pegaspargase, gemcitabine, and oxaliplatin in advanced extranodal natural killer/T cell lymphoma (SPIRIT): a multicentre, single-arm, phase 2 trial

Prof Xiao-Peng Tian, MD a, Jun Cai, MD a, Prof Yi Xia, MD a, Yu-Chen Zhang, MD a, Prof Liang Wang, MD B, Pan-Pan Liu, MD a

- Phase 2 trial to assess the safety and activity of sintilimab plus P-GEMOX in the first-line setting for advanced ENKTL.
- Primary end-point: CR rate in ITT-population
- 34 pts enrolled and at a median follow-up of 21 months, the CR rate was 85% (29 of 34 pts), 5 pts had PR attaining a ORR of 100%
- No severe AEs occurred
- Sintilimab + GEMOX seems to be a safe and active first-line treatment for advanced stage ENKTL.

1st line treatment of ENKTCL

- EBV DNA in peripheral blood should be monitored by quantitative PCR at baseline and during therapy as a biomarker of response, in addition to imaging-based response assessment [II, A].
- Fit patients with limited-stage disease should receive ISRT (≥50 Gy) with concurrent, interposed or sequential anthracycline-free, L-asparaginase-containing ChT [e.g. DDGP or modified SMILE (mSMILE) for transplant-eligible and AspMetDex or P-GEMOX for transplant-ineligible patients] [II, A].
- A multiagent, anthracycline-free, L-asparaginase-containing regimen can be recommended for patients with stage III and IV nasal disease or stage I-IV extranasal disease (e.g. DDGP or mSMILE for transplant-eligible and AspMetDex or P-GEMOX for transplant-ineligible patients) [III, B]. Addition of ISRT can be decided on a case-by-case basis [III, B].
- If available, Crisantaspase (Erwinia Chrysanthemi-derived L-asparaginase) should be offered to patients, who have developed hypersensitivity or inactivating antibodies to E.coli-derived L-asparaginase [III, A].
- In transplant-eligible responding high-risk patients, consolidative auto- or allo-HSCT can be considered [III, B]. The choice of HSCT should be made on a case-by-case basis considering factors such as pretherapeutic risk profile, response to first-line therapy, performance status (PS) and donor availability [III, B].
- Based on encouraging recent results, upfront treatment with anti-PD-1 antibodies (e.g. sintilimab) in combination with L-asparaginase containing regimens (e.g P-GEMOX) can also be considered.

1st line treatment of EATL

- In fit and transplant-eligible patients, one cycle of CHOP or CHOEP, followed by three cycles of IVE alternated with intermediate-dose MTX can be considered [III, B].
- Alternative regimens are six cycles of BV-CHP [Food and Drug Administration (FDA) approved, not European Medicines Agency (EMA) approved] or CHO(E)P [III, B].
- Consolidative high-dose ChT and auto-HSCT can be considered for transplant-eligible responding patients [III, B].
- Six cycles of CHOP or CHOP-like ChT [IV, B] or six cycles of BV-CHP [III, B; FDA approved, not EMA approved] can be recommended for frail or otherwise transplant-ineligible patients.

This CPG also includes algorithm/recommendations for RCDII

BV-CHP + Etoposide/MTX+ ASCT in EATL

Sibon D et al. The Eatl-001 Trial: Results of a Phase 2 Study of Brentuximab Vedotin and CHP Followed By Consolidation with High-Dose Therapy - Autologous Stem-Cell Transplantation (HDT-ASCT) in the Frontline Treatment of Patients with Enteropathy-Associated T-Cell Lymphoma.

Blood. 2021;138(suppl 1):136 (ASH 2021)

Fase 2 study of the CELAC (French Network of Centers of Expertise for Lymphomas Associated with Celiac disease)

- First prospective ph 2 study dedicated to EATL
- BV-CHP was well tolerated and induced high response rates, allowing the majority of patients to be transplanted
- Novel therapeutic approach with promising efficacy compared to historical controls

Study parameter	
Inclusion criteria	 De novo CD30+ (>10%) EATL (WHO2016) 18-65 y PS 0-3
Treatment	4xBV+CHP >> 2xEto (200mg/m2) + MTX (3g/m2) >> autoHSCT (BEAM)
Trial cohort	 14 pts, (med. age:54y, (34-65), 64% males CD30+ range 10-100% (9 pts 100%) 11 bowel obstr. (6) or jejunal perforation (5) All had CD dx prior or concomitantly with EATL 9 had RCDII
Toxicity	 2 toxic deaths during HDT-ASCT AEs consistent with known safety profile for BV-CHP
Response	ORR 79% (11/14) with CR 64% - 11 pts went on to auto-HSCT
Outcome	Med follow-up: 2.1yNo relapse2y PFS:63%; 2yOS 68%

Thank you for your attention