
Relapsed or Refractory Mantle cell lymphoma: Treatment Strategies and Emerging Therapies

Dok Hyun Yoon

Asan Medical Center
University of Ulsan College of Medicine

Disclosures

- Honoraria: Celltrion, Roche, Janssen, Amgen, Celgene, Boryung, Samyang, Kirin Pharm and Takeda
- Consulting or Advisory Role: GC Cell, Abclone and GI-cell
- Research funding: Abbvie, Celltrion, Samyang and Beigene

ESMO guidelines for RRMCL (2017)

- Young patients ≤ 65 years
 - Targeted approaches
 - Immunochemotherapy
 - Discussion about allo-SCT

- Elderly patients > 65 years
 - Targeted approaches
 - Immunochemotherapy
 - Discussion about R maintenance or radioimmunotherapy

- Compromised patient
 - Targeted approaches
 - Immunochemotherapy

Higher relapse

Targeted approaches: ibrutinib, lenalidomide, temsirolimus, bortezomib Alternatively, repeat previous therapy (long remission)

cBTKi is moving to frontline therapy

TRIANGLE

Ibrutinib combined with immunochemotherapy with or without autologous stem-cell transplantation versus immunochemotherapy and autologous stem-cell transplantation in previously untreated patients with mantle cell lymphoma (TRIANGLE): a three-arm, randomised, open-label, phase 3 superiority trial of the **European Mantle Cell Lymphoma Network**

Background Adding ibrutinib to standard immunochemotherapy might improve outcomes and challenge autologous stem-cell transplantation (ASCT) in younger (aged 65 years or younger) mantle cell lymphoma patients. This trial aimed to investigate whether the addition of ibrutinib results in a superior clinical outcome compared May 2, 2024 with the pre-trial immunochemotherapy standard with ASCT or an ibrutinib-containing treatment without ASCT. We also investigated whether standard treatment with ASCT is superior to a treatment adding ibrutinib but without ASCT.

oa

Lancet 2024; 403: 2293-306

https://doi.org/10.1016/ 50140-6736(24)00184-3

See Comment page 2264 *Contributed equally

ECHO

Original Reports | Hematologic Malignancy

©Acalabrutinib Plus Bendamustine-Rituximab in Untreated Mantle Cell Lymphoma

Michael Wang, MD¹ (a); David Salek, MD²; David Belada, MD³; Yugin Song, MD⁴; Wojciech Jurczak, MD, PhD⁵,6; Brad S. Kahl, MD7 (b); Jonas Paludo, MD8 (5); Michael P. Chu, MD9; Iryna Kryachok, MD10; Laura Fogliatto, MD11; Chan Y. Cheah, DMSc12,13 (6); Marta Morawska, MD, PhD14,15 [6]; Juan-Manuel Sancho, MD16 [6]; Yufu Li, MD17; Caterina Patti, MD18; Cecily Forsyth, MD19 [6]; Jingyang Zhang, PhD²⁰; Robin Lesley, PhD²⁰; Safaa Ramadan, MD, PhD²¹; Simon Rule, MD, PhD²¹; and Martin Dreyling, MD, PhD²² (b); for the ECHO investigators

DOI https://doi.org/10.1200/JCO-25-00690

ABSTRACT

PURPOSE The combination of the Bruton tyrosine kinase inhibitor ibrutinib with bendamustine-rituximab for first-line treatment of mantle cell lymphoma (MCL) prolonged progression-free survival (PFS), but without improvement in overall survival (OS), likely because of toxicity. Acalabrutinib was shown to be efficacious and less toxic than ibrutinib in a head-to-head trial in chronic lymphocytic leukemia and therefore might lead to better outcomes in MCL.

METHODS Patients 65 years and older with previously untreated MCL received acalabrutinib (100 mg twice daily) or placebo (until disease progression or unacceptable toxicity), plus six cycles of bendamustine (90 mg/m2 once daily; days 1 and 2) and rituximab (375 mg/m² as a single dose; day 1) followed by rituximab maintenance in responding patients for 2 years. Crossover to acalabrutinib at disease progression was permitted. The primary end point was PFS per the independent review committee; overall response rate and OS were secondary

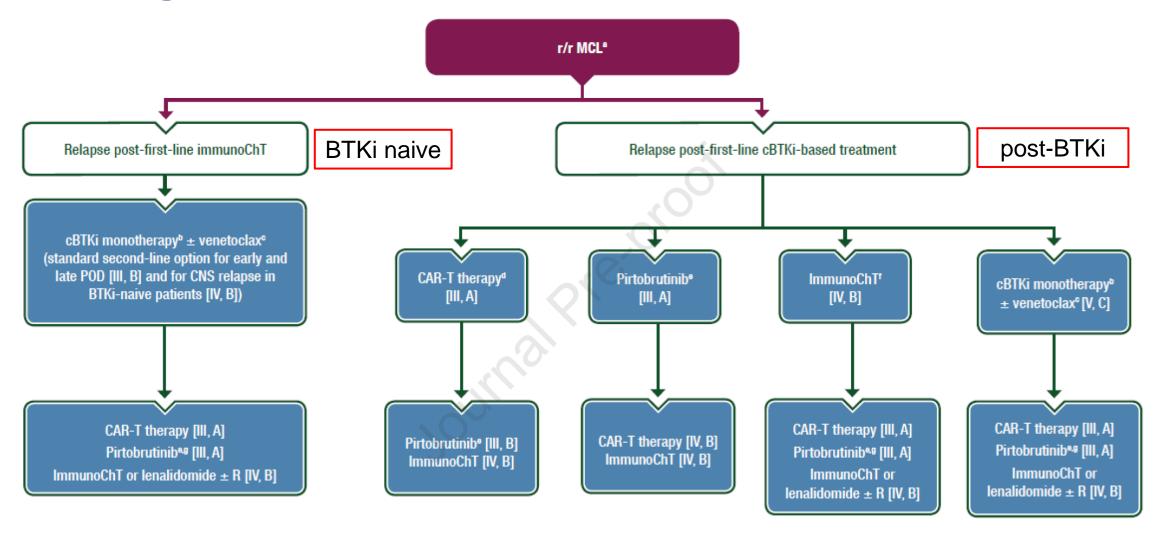
RESULTS In total, 598 patients were randomly assigned, with 299 in each arm. At a median follow-up of 49.8 months using the reverse Kaplan-Meier method, the median PFS was 66.4 months in the acalabrutinib arm and 49.6 months in the

ACCOMPANYING CONTENT

Appendix

Data Sharing Statement

▶ Data Supplement


Protocol

Accepted April 24, 2025 Published May 1, 2025

J Clin Oncol 00:1-9 © 2025 by American Society of Clinical Oncology

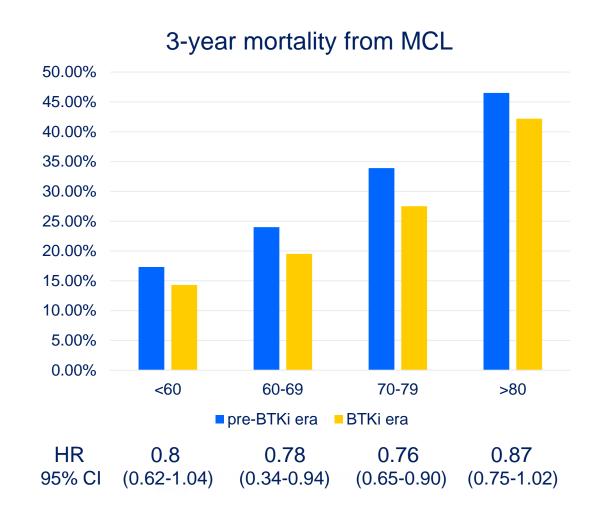
ESMO guidelines for RRMCL (2025)

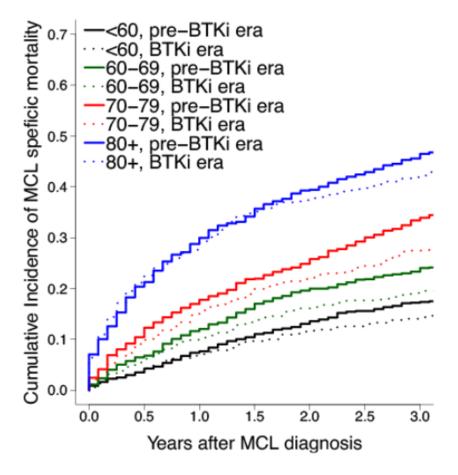
NCCN guidelines

v5.2021 v2.2025

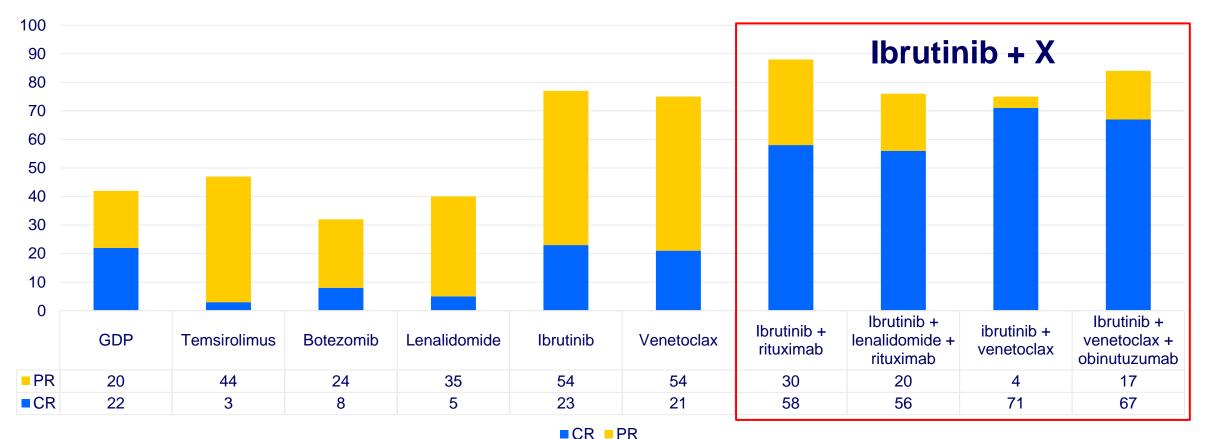
- Second-line and subsequent therapy
- Preferred Regimens (in alphabetical order)
 - BTK inhibitors
 - Acalabrutinib
 - Ibrutinib ± rituximab
 - Zanubrutinib
 - Lenalidomide + rituximab
- Useful in certain circumstances
 - Bendamustine + rituximab (if not previously given)
 - + others like RBAC, R-DHAX, R-GemOx....
- Second-line consolidation
 - Allo-SCT (non-myeloablative or myeloablative)
- Third-line therapy
 - Brexucabtagene autoleucel
 (only after chemoimmunotherapy and BTK inhibitor)

NCCN guidelines


v5.2021 v2.2025

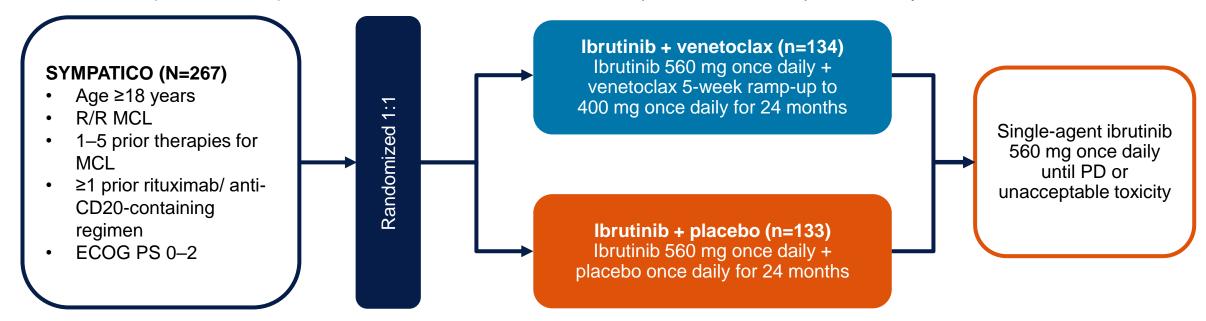

- Second-line and subsequent therapy
- Preferred Regimens (in alphabetical order)
 - BTK inhibitors
 - Acalabrutinib
 - Ibrutinib ± rituximab
 - Zanubrutinib
 - Lenalidomide + rituximab
- Useful in certain circumstances
 - Bendamustine + rituximab (if not previously given)
 - + others like RBAC, R-DHAX, R-GemOx....
- Second-line consolidation
 - Allo-SCT (non-myeloablative or myeloablative)
- Third-line therapy
 - Brexucabtagene autoleucel
 (only after chemoimmunotherapy and BTK inhibitor)

- Second-line and subsequent therapy
- Preferred Regimens (in alphabetical order)
 - Covalent BTKi (continuous): Acala or Zanubrutinib
 - Lenalidomide + rituximab
- Other recommended regimen
 - Covalent BTKi (continuous): Ibrutinib ± rituximab
- Useful in certain circumstances
 - Bendamustine + rituximab (if not previously given)
 - + others like RBAC, R-DHAX, R-GemOx....
- PD after prior cBTKi
 - Non-covalent BTKi (continuous): Pirtobrutinib
 - CAR T-cell therapy: Brexu-cel or Liso-cel
- PD after CAR T-cell therapy and pirtobrutinib or ineligible for CAR T-cell therapy
 - Glofitamab (category 2B)


Improved survival in the era of BTKi: SEER data

Pre-BTKi era (2007-2011, n=3424) vs. BTKi era (2014-2018, n=4201)

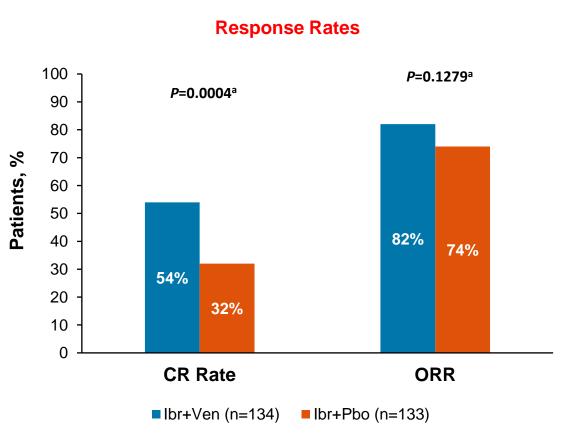
Overall response rates for therapeutics for R/R MCL

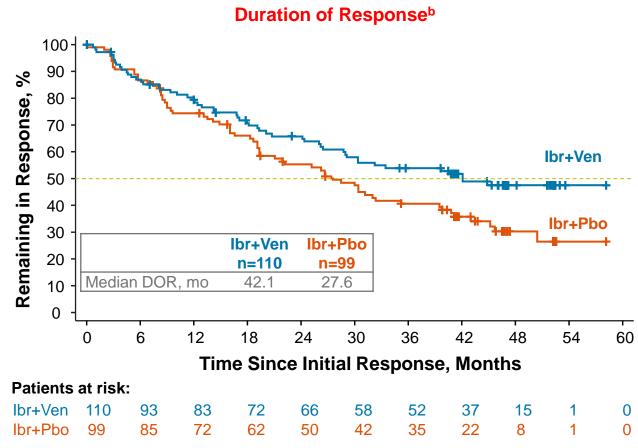


* Data from each trial

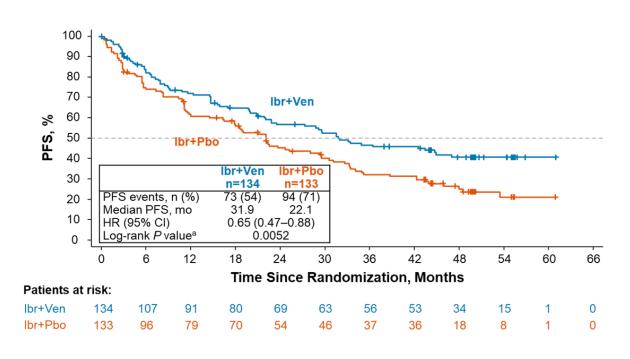
GDP: Ann Oncol. 2007 Feb;18(2):370-5; Temsirolimus phase 3, Lancet. 2016;387:770–778; Bortezomib; J Clin Oncol. 2006;24:4867–4874; update of PINNACLE study Ann Oncol. 2009;20: 520–525; Bortezomib + R; Haematologica. 2011;96(7):1008-1014; Lenalidomide: MCL-002; SPRINT, randomized phase 2 _Lancet Oncol. 2016;17(3):319-331; Lenalidomide + R, Lancet Oncol. 2012;13(7):716-723; Ibrutinib, phase 3, Lancet. 2016;387:770–778; Ibrutinib+R, phase 2 update, Br J Haematol 2018 May 22. doi:10.1111/bjh.15411; Venetoclax, phase 1 J Clin Oncol. 2017;35(8): 826-833; ibrutinib+lenalidomide+rituximab, Lancet Haematol. 2018;5(3):e109-e116; ibrutinib+venetoclax, NEJM 2018;378:1211-1223 Blood 2020, epub. ibrutnib+venetoclax+obinutuzumab

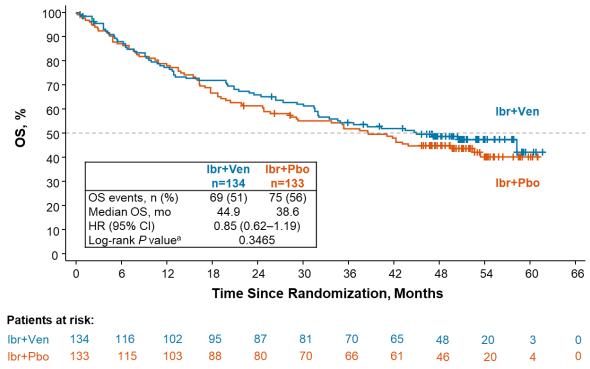
Ibrutinib Combined With Venetoclax in Patients With RR-MCL: Primary Analysis Results From the Randomized Phase 3 SYMPATICO Study


SYMPATICO (NCT03112174) is multinational, randomized, double-blind, placebo-controlled, phase 3 study



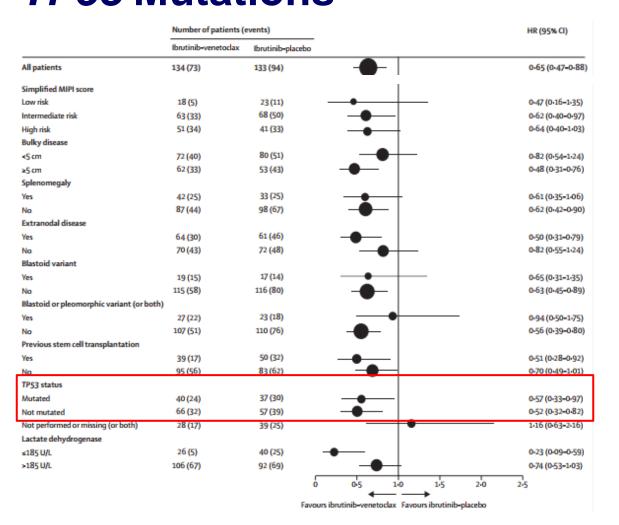
Stratification: ECOG PS, prior lines of therapy, TLS riska

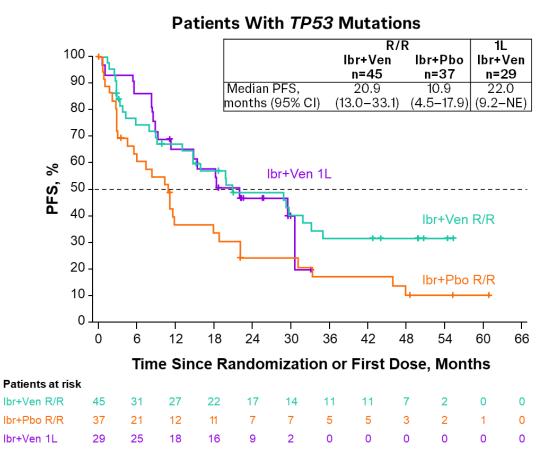

- Primary endpoint:
 - PFS by investigator assessment using Lugano criteria
- Secondary endpoints (tested hierarchically in the following order):
 - CR rate by investigator assessment
 - TTNTb
 - OS (interim analysis)
 - · ORR by investigator assessment


CR rate was significantly improved with ibrutinib + venetoclax

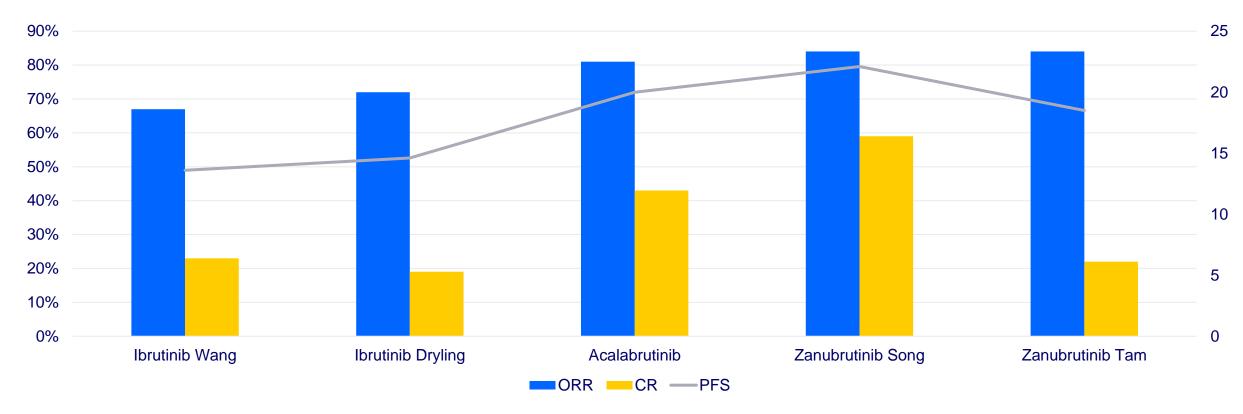
Significantly improved PFS and numerically higher OS in ibrutinib + venetoclax arm

Ibrutinib + venetoclax seems to be tolerable

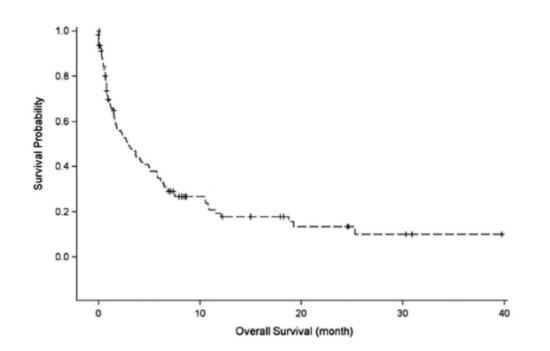

- Safety was consistent with known AEs of each single agent
- Median overall treatment duration:
 - Ibrutinib + venetoclax, 22.2 months (range, 0.5–60.4)
 - Ibrutinib + placebo,
 17.7 months
 (range, 0.1–58.9)

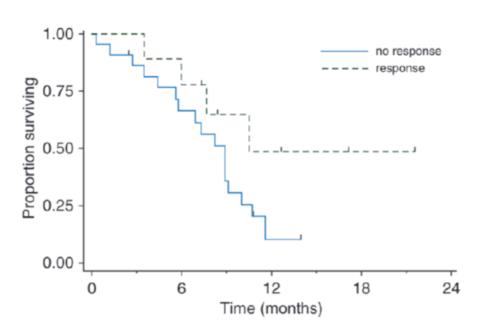

AE, n (%)	lbrutinib + venetoclax n=134	lbrutinib + placebo n=132
Grade ≥3 AEs	112 (84)	100 (76)
Serious AEs	81 (60)	79 (60)
AEs leading to discontinuat ion Ibrutinib only Venetoclax/placebo only Both	41 (31) 11 (8) 2 (1) 28 (21)	48 (36) 10 (8) 7 (5) 31 (23)
AEs leading to dose reducti on Ibrutinib only Venetoclax/placebo only Both	48 (36) 17 (13) 14 (10) 17 (13)	29 (22) 14 (11) 7 (5) 8 (6)
AEs leading to death Ibrutinib-related Venetoclax/placebo-relate da	22 (16) 3 (2) 0	18 (14) 2 (2) 1 (1)
Tumor lysis syndrome Laboratory Clinical	7 (5) 0	3 (2) 0

AE, n (%)	lbrutinib + v enetoclax n=134	Ibrutinib + pl acebo n=132
Most frequent any-grade A Esb Diarrhea Neutropenia Nausea Fatigue Anemia Pyrexia Cough Muscle spasms	87 (65) 46 (34) 42 (31) 39 (29) 30 (22) 28 (21) 27 (20) 11 (8)	45 (34) 19 (14) 22 (17) 36 (27) 16 (12) 26 (20) 36 (27) 32 (24)
Most frequent grade ≥3 AE s ^c Neutropenia Pneumonia Thrombocytopenia Anemia Diarrhea Leukopenia MCL ^d Atrial fibrillation COVID-19 Hypertension	42 (31) 17 (13) 17 (13) 13 (10) 11 (8) 10 (7) 9 (7) 7 (5) 7 (5) 6 (4)	14 (11) 14 (11) 10 (8) 4 (3) 3 (2) 0 16 (12) 7 (5) 1 (1) 12 (9)


dWorsening of MCL not meeting protocol criteria for progressive disease

Ibrutinib + venetoclax seems to work better regardless of TP53 Mutations

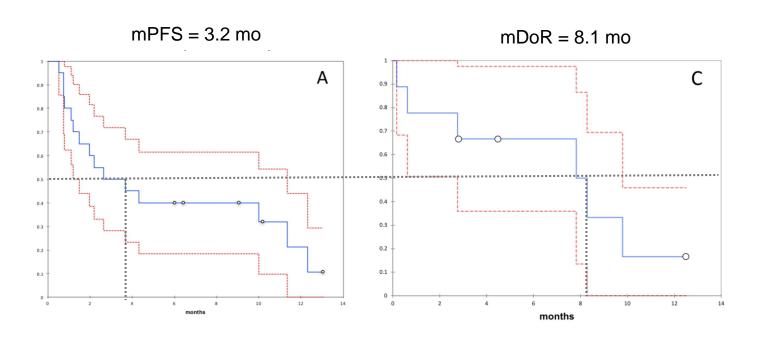

Ibrutinib, acalabrutinib and zanubrutinib

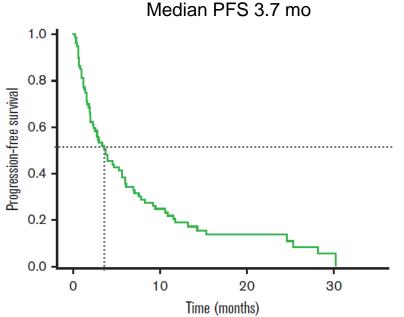


Ibrutininib Dryiling: 280 patients were included; 139 were treated with ibrutinib and 141 with temsirolimus; Zanubrutinib Tam: 48 MCL patients were included in the study, 37 of whom had R/R MCL.

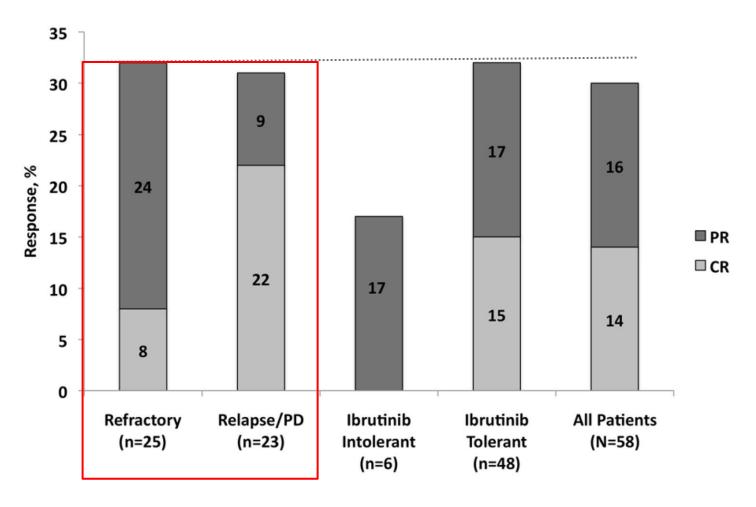
Outcomes in MCL are Poor Following Covalent BTK Inhibitor Progression

- Covalent BTK inhibitor resistance in MCL and other lymphomas is incompletely understood¹⁻¹⁰
- BTK C481-mutations are uncommon; bypass alterations & epigenetic changes implicated in some patients⁷
- Overall survival following covalent BTK inhibitor therapy is poor^{3,4}




Figures adapted from Martin et al, 2016 (left) and Cheah et al, 2015 (right). ¹Hershkovitz-Rokah et al. *Br J. Haemtol.* 2018;181:306-19. ²Wang et al. *N. Engl. J. Med.* 2013;369:507-16. ³Cheah et al. *Ann. Oncol.* 2015;26:1175-79. ⁴Martin et al. *Blood.* 2016;127:1559-63. ⁵Dreyling et al. *Lancet.* 2016;387:770-8. ⁶Epperla et al. *Hematol. Oncol.* 2017;35:528-35. ⁷Ondrisova L and Mraz M, *Front. Oncol.* 2020;10. ⁸O'Brien et al. *Clin Lymphoma Myeloma Leuk.* 2018;18:648-57. ⁹Byrd et al. *Blood.* 2019;130(Suppl 1):4326. ¹⁰Tam et al. *Blood.* 2020;136:2038-50.

Venetoclax in those with BTKi-refractory Still some respond, but limited DoR


UK CUP, n=20
ORR 53% with CRR 18%

US multicenter retrospective study (n=81)
ORR 40%

Observational study of lenalidomide in patients with rrMCL refractory/intolerant to ibrutinib (MCL-004)

ORR < 30% with mDoR of 20 weeks

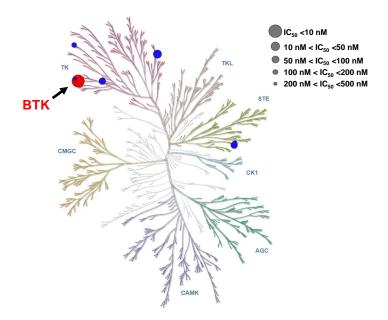
Covalent BTKi

Ibrutinib

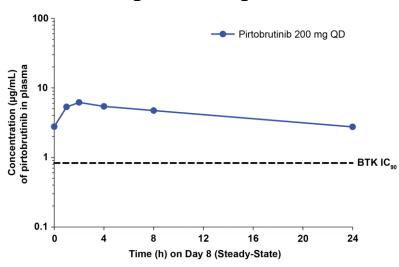
NH NH NH NH NH NH NH

Acalabrutinib

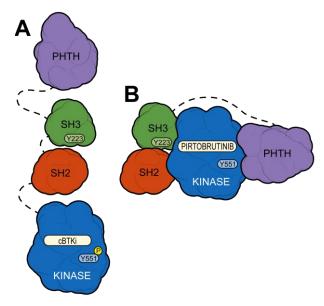
Non-covalent BTKi


ARQ-531 (nemtabrutinib) LOXO-305 (pirtobrutinib)

SNS-062 (vecabrutinib)


NH₂

Pirtobrutinib is a Highly Selective, Non-Covalent (Reversible) BTK Inhibitor



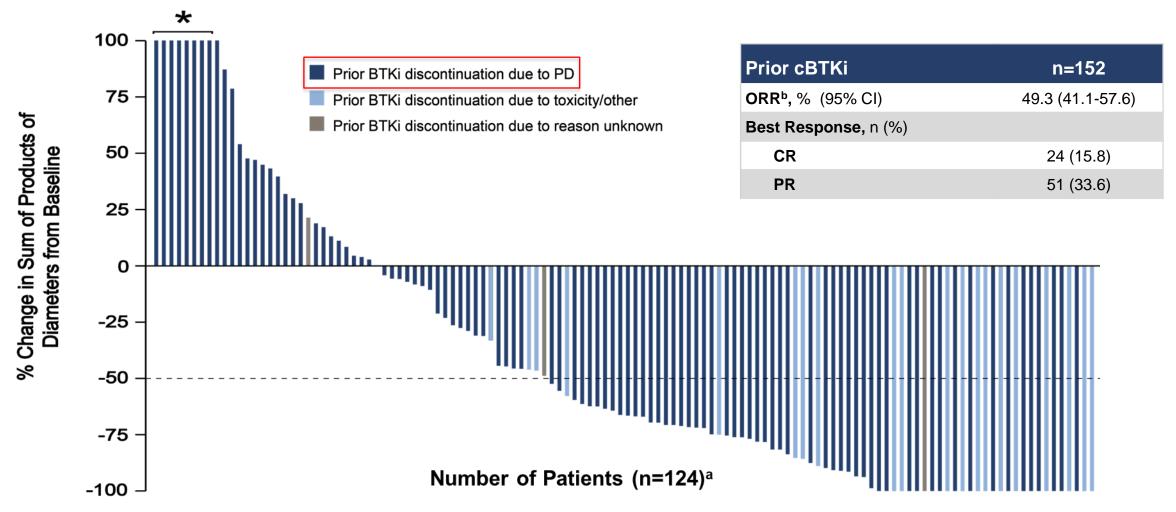
Plasma exposures exceeded BTK IC₉₀ throughout dosing interval

Pirtobrutinib may stabilize/maintain BTK in a closed inactive conformation⁸

- Inhibits both WT and C481-mutant BTK with equal low nM potency⁸
- Steady state plasma exposure corresponding to 96% BTK target inhibition and a half-life of about 20 hours⁸
- In contrast to cBTKi (A), pirtobrutinib (B) appears to stabilize BTK in a closed, inactive conformation, blocking access to upstream kinases and phosphorylation of Y551, thus inhibiting scaffolding interactions that support kinase-independent BTK signaling⁸

³Mato et al. Lancet 2021; 397: 892–901. ⁷Brandhuber et al. Clin Lymphoma Myeloma Leuk 2018; 18(Suppl.1);S216. ⁸Gomez et al. Blood.2023; 142(1):62-72.

J Clin Oncol. 2023 Aug 20;41(24):3988-3997

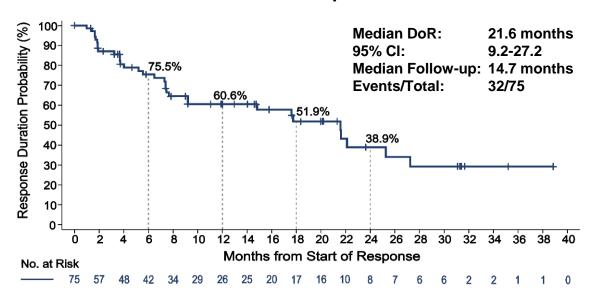

Baseline Characteristics of Patients with MCL

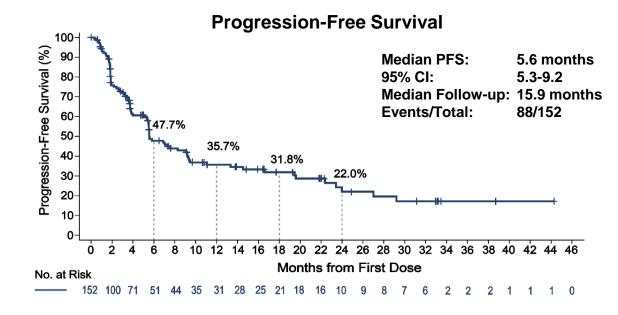
Characteristics	Prior cBTKi n=152	cBTKi Naïve n=14
Median age, years (range)	70 (46-88)	67 (60-86)
Male , n (%)	120 (79)	10 (71)
Histology, n (%)		
Classic/leukemic	120 (79)	11 (79)
Pleomorphic/Blastoid	32 (21)	3 (21)
ECOG PS, n (%)		
0	93 (61)	5 (36)
1	56 (37)	8 (57)
2	3 (2)	1 (7)
sMIPI score, n (%)	re, n (%)	
Low risk (0-3)	30 (20)	3 (21)
Intermediate risk (4-5)	79 (52)	5 (36)
High risk (6-11)	43 (28)	6 (43)
Bulky Lymphadenopathy (cm), n (%)		
<5	94 (62)	8 (57)
≥5	36 (24)	5 (36)
No Measurable Lymph Node	22 (15)	1 (7)
Bone marrow involvement, n (%)		
Yes	81 (53)	4 (29)
No	71 (47)	10 (71)
Median number of prior lines of systemic therapy, n (range)	3 (1-9)	2 (1-3)

Characteristics	Prior cBTKi n=152	cBTKi Naïve n=14		
Prior therapy, n (%)	,			
BTK inhibitor	152 (100)	0 (0)		
Anti-CD20 antibody	147 (97)	14 (100)		
Chemotherapy	137 (90)	14 (100)		
Immunomodulator	26 (17)	1 (7)		
Stem cell transplant	33 (22)	7 (50)		
Autologous	30 (20)	7 (50)		
Allogeneic	7 (5)	0 (0)		
BCL2 inhibitor	24 (16)	0 (0)		
CAR-T	13 (9)	0 (0)		
PI3K inhibitor	6 (4)	1 (7)		
Reason discontinued any prior BTKia, n (%)				
Progressive disease	128 (84)	-		
Toxicity / Other	21 (14)	<u>-</u>		
Unknown	3 (2)	-		
TP53 Mutation status, n (%)				
Yes	30 (20)	3 (21)		
No	30 (20)	4 (29)		
Missing	92 (61)	7 (50)		
Ki-67 index , n (%)				
<30%	18 (12)	2 (14)		
≥30%	45 (30)	6 (43)		
Missing	89 (59)	6 (43)		

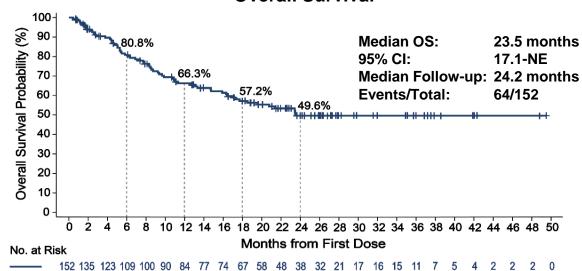
^aIn the event more than one reason was noted for discontinuation, disease progression took priority. Total percentages may not sum to 100% due to rounding.

Pirtobrutinib Efficacy in Patients with MCL who Received Prior cBTKi

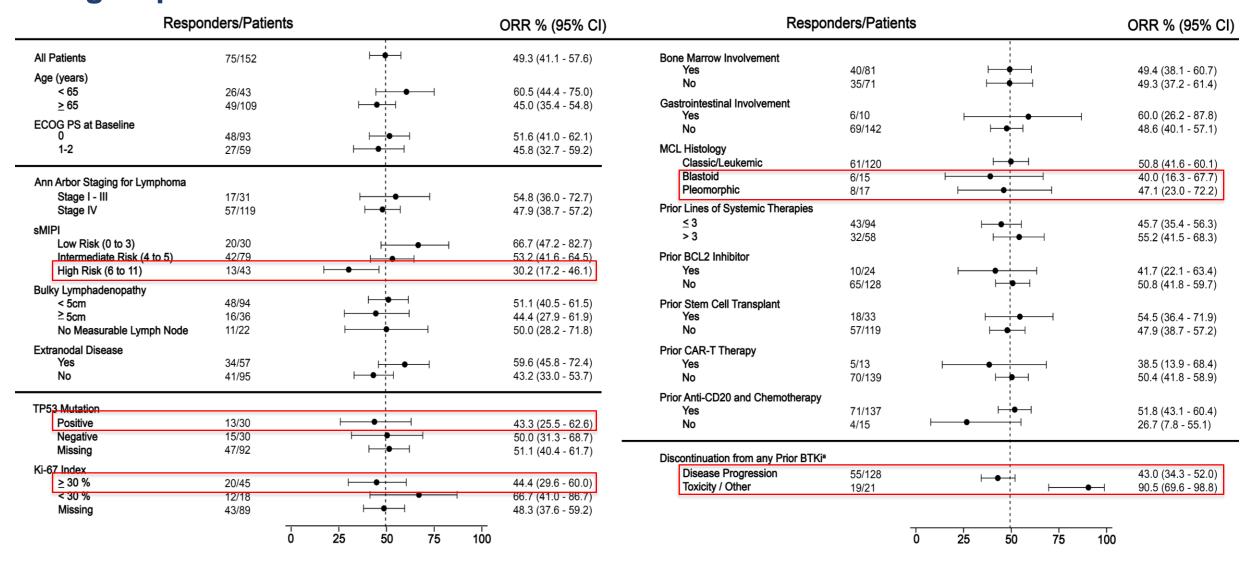



Median Time to First Response was 1.8 months (range: 0.8-13.8)

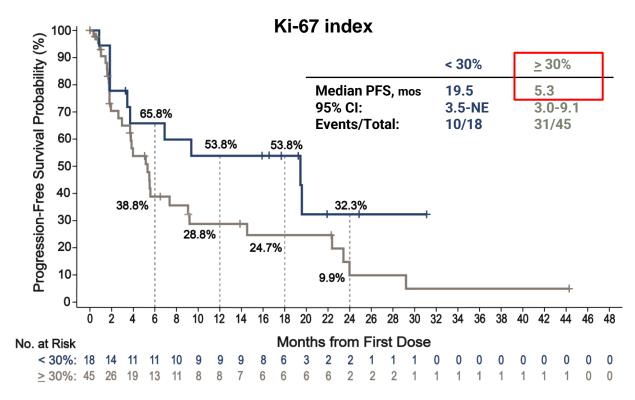
Data of patients with baseline and at least one evaluable post baseline tumor measurement. *Patients with >100% increase in SPD. aData for 28/152 patients who received prior cBTKi are not shown in the waterfall plot due to no measurable target lesions identified by CT at baseline, discontinuation prior to first response assessment, or lack of adequate imaging in follow-up. bORR is the number of patients with best response of CR or PR divided by the total number of patients; 13 patients with a best response of not evaluable (NE) are included in the denominator. Response status per Lugano 2014 criteria based on IRC assessment.


Pirtobrutinib Outcomes in Prior cBTKi Patients with MCL

Duration of Response



Overall Survival



Overall Response Rate in Prior cBTKi Patients with MCL, Including High-Risk Subgroups

Data reported in the forest plot is overall response rate by prespecified patient characteristic subgroups. Two-sided 95% CI were calculated using the exact binomial distribution. aln the event more than one reason was noted for discontinuation, disease progression took priority. Response status per Lugano 2014 criteria based on IRC assessment.

Pirtobrutinib Outcomes in Prior cBTKi Patients with MCL by High-Risk Subgroups

(9)	100-	۹,									TP	2 53	st	at	us									-		
Progression-Free Survival Probability (%)	90-	-	1														Un	mut	ate	d	Γ	M	luta	ted		
abil	80-		14									diar		·S, ı	nos		6.9						.7			
Prok	70-		1,	٦								% CI ents		tal·			3.7 19/	'-16 /วก	.6				.8-5 1/3			
Val	60-		+	L	- 50	00/					LVC	iilo	, 10	tai.			1 2/	30				_	1/5	J		
Survi	50-					.9%																				
99	40-				ļ	_	L	38.	5%																	
ŗ	30-						+		L	\neg	28.	8%														
ssio	20-		2	9.69	6	,	23.79	<u>:</u>	-	23.7	% [:]	1		կ₁	7.39	6										
ogre	10-					•						L	—	Ħ				-						—		
Ą	0-											0.0	%													
	O L	Ó	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48
No. at	Risk										Mc	onth	s fr	om	Fir	st [Dos	е								
Unmuta			20	14	12	9	8	8	8	7	5	5	5	3	2	2	2	1	1	1	1	1	1	1	0	0
Muta	ated:	30	15	10	6	6	4	4	4	4	4	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0

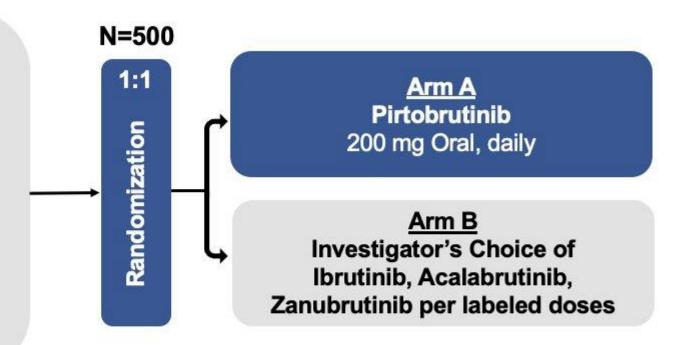
Ki-67	Median DoR (95% CI)	Median OS (95% CI)
< 30%	17.7 (1.9-N.E.)	N.E. (9.4-N.E)
≥ 30%	21.6 (5.6-27.2)	23.4 (13.1-N.E.)

	Median DoR (95% CI)	Median OS (95% CI)
TP53		
Unmutated	14.8 (1.9-N.E.)	N.E (10.7-N.E.)
Mutated	17.6 (1.7-N.E.)	15.9 (7.8-N.E)

Pirtobrutinib Safety Profile in MCL Patients

	Treatment-Emergent AEs in Patients with MCL (n=166)											
	All Cause AE	Es, (≥15%), %	Treatment-Re	lated AEs, %								
Adverse Event	Any Grade	Grade ≥3	Any Grade	Grade ≥3								
Fatigue	31.9	3.0	21.1	2.4								
Diarrhea	22.3	0.0	12.7	0.0								
Dyspnea	17.5	1.2	9.0	0.6								
Anemia	16.9	7.8	7.2	2.4								
Platelet Count Decreased	15.1	7.8	7.8	3.0								
AEs of Interest ^a	Any Grade	Grade ≥3	Any Grade	Grade ≥3								
Infections ^b	42.8	19.9	15.7	3.6								
Bruising ^c	16.3	0.0	11.4	0.0								
Rash ^d	14.5	0.6	9.0	0.0								
Arthralgia	9.0	1.2	2.4	0.0								
Hemorrhage ^e	10.2	2.4	4.2	0.6								
Hypertension	4.2	0.6	1.8	0.0								
Atrial Fibrillation/Flutter ^{f,g}	3.6	1.8	0.6	0.0								

Median time on treatment was 5.5 months for the MCL cohort Discontinuations due to TRAEs occurred in 3% (n=5) of patients with MCL Dose reductions due to TRAEs occurred in 5% (n=8) of patients with MCL

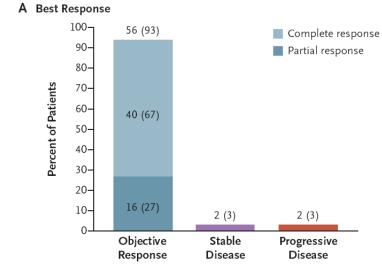

Cohen et al.; ASH 2023

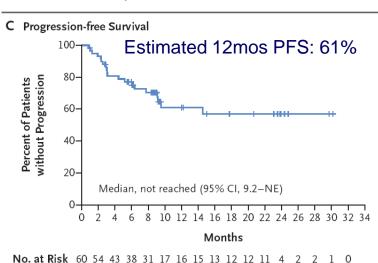
^aAEs of interest are those that were previously associated with covalent BTK inhibitors. ^bAggregate of all preferred terms including infection and COVID-19. ^cAggregate of contusion, ecchymosis, and increased tendency to bruise. ^dAggregate of all preferred terms including rash. ^eAggregate of all preferred terms including hemorrhage or hematoma. ^fAggregate of atrial fibrillation and atrial flutter. ^gOf 6 total atrial fibrillation and atrial flutter TEAEs, 3 occurred in patients with a prior medical history of atrial fibrillation. In the MCL cohort, treatment-related AEs leading to discontinuation included weight decrease/alopecia/fatigue (1), neutropenia (1), platelet count decreased (1), and cholecystitis (1).

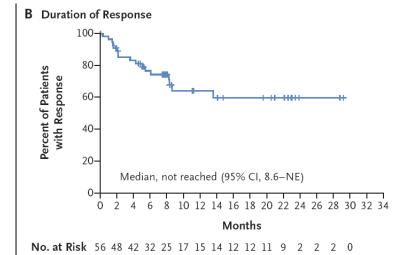
BRUIN MCL-321 is a randomized, open-label, global, phase 3 study (NCT04662255)

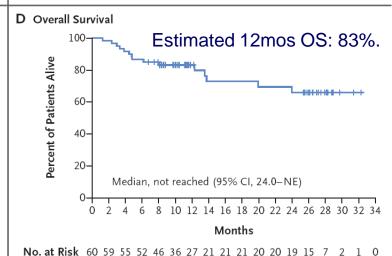
Key Inclusion Criteria

- Confirmed diagnosis of MCL
- ≥1 prior (non-BTKi) line of systemic therapy for MCL
- Measurable disease per Lugano criteria
- Radiographically / histologically confirmed PD on the most recent line of therapy or relapse
- ≥18 years of age and ECOG 0-2

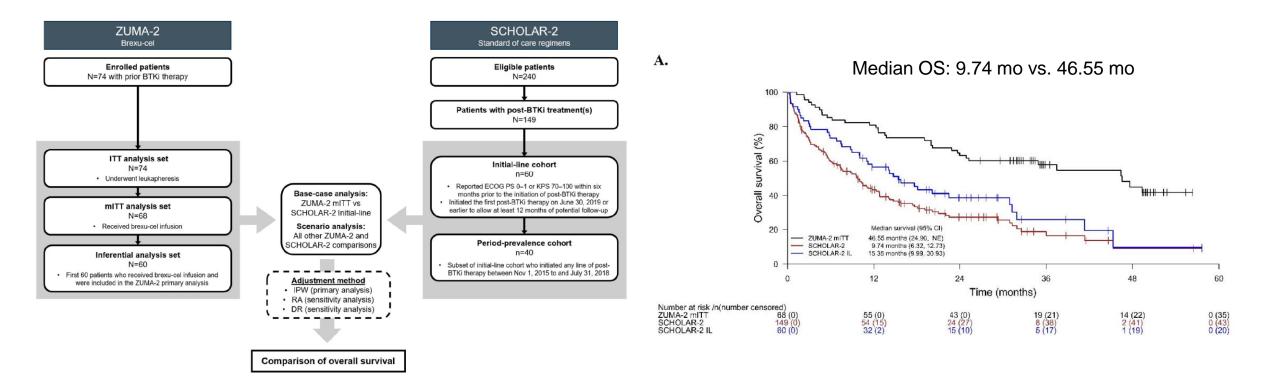

Stratification factors

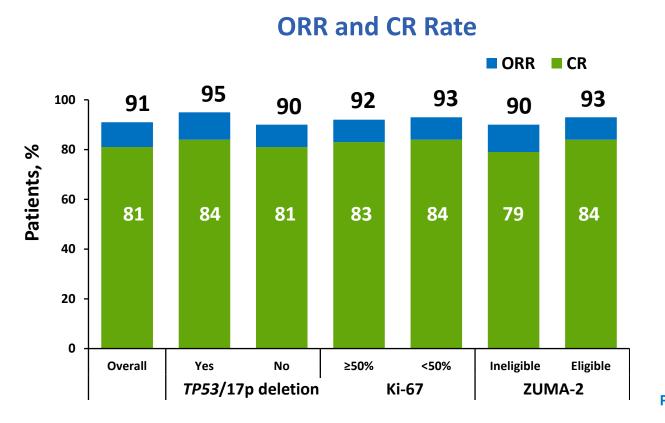

- sMIPI risk group (low / intermediate vs high)
- Intended comparator BTK inhibitor (ibrutinib vs acalabrutinib / zanubrutinib)
- Number of prior lines of therapy (1 vs ≥ 2)


CAR T-cell therapy in R/R MCL (ZUMA-2)


Brexucabtagene autoleucel (Tecartus®, KTE-X19)

- During manufacturing, B-cell depletion is performed before viral transduction and followed by an additional positive T-cell selection for enrichment
- N=68 pts
 - 17 patients (25%) had blastoid histology, 6 had TP53 mt, and 32 exhibited Ki-67 ≥ 50%.
 - median 3 prior LOT (81% with ≥ 3 LOT).
 - Previous BTKi therapies: 100%,
 72% refractory to BTKi.

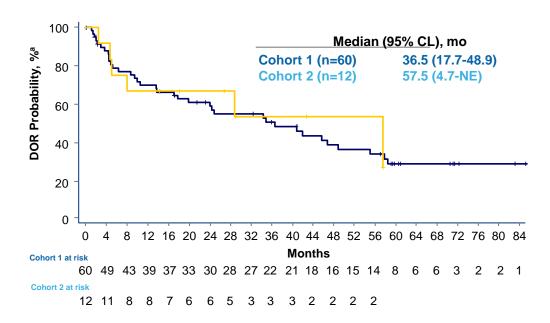




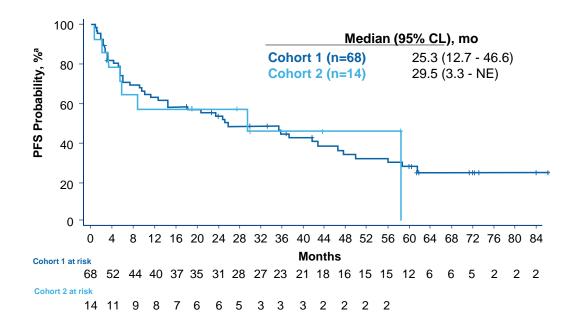
Indirect treatment comparison of brexucabtagene autoleucel (ZUMA-2) versus standard of care (SCHOLAR-2) in relapsed/refractory mantle cell lymphoma

Real world outcomes of Brexu-cel from CIBMTR

Kaplan–Meier Estimates for DOR

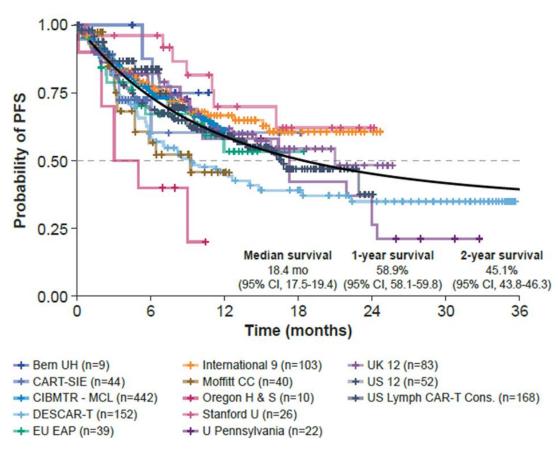


- ORR and CR rates were consistent across high-risk subgroups
- Median DOR was not yet reached

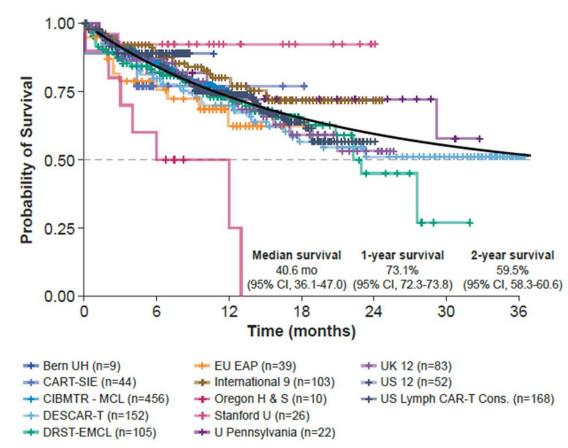

^a Subsequent cellular therapy and HCT without previously documented relapse or disease progression were censored; median follow-up was 12.3 months (range, 2.9-28.6). ^b Among patients who achieved CR as best response. ^c Among patients who achieved CR/PR as best response.

CR, complete response; DOR, duration of response; HCT, hematopoietic cell transplant; ORR, overall response rate; PR, partial response.

ZUMA-2 5-year outcomes

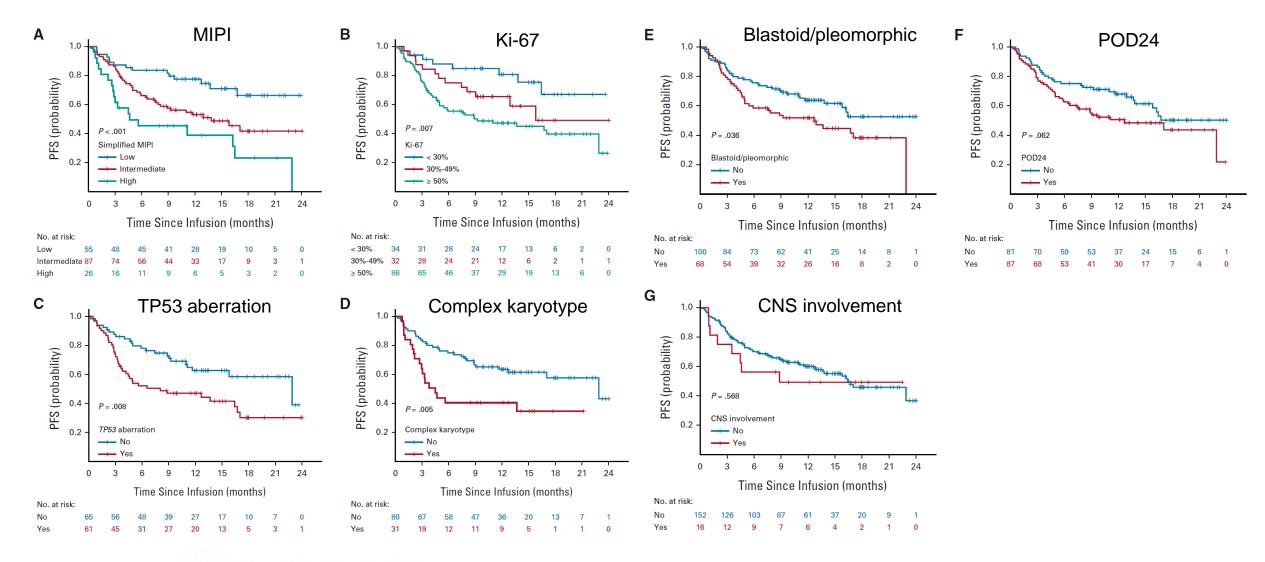


 In Cohort 1, median investigator-assessed DOR was 36.5 months (95% CI, 17.7-48.9; n=60) with 17 patients in ongoing response at data cutoff, all CR

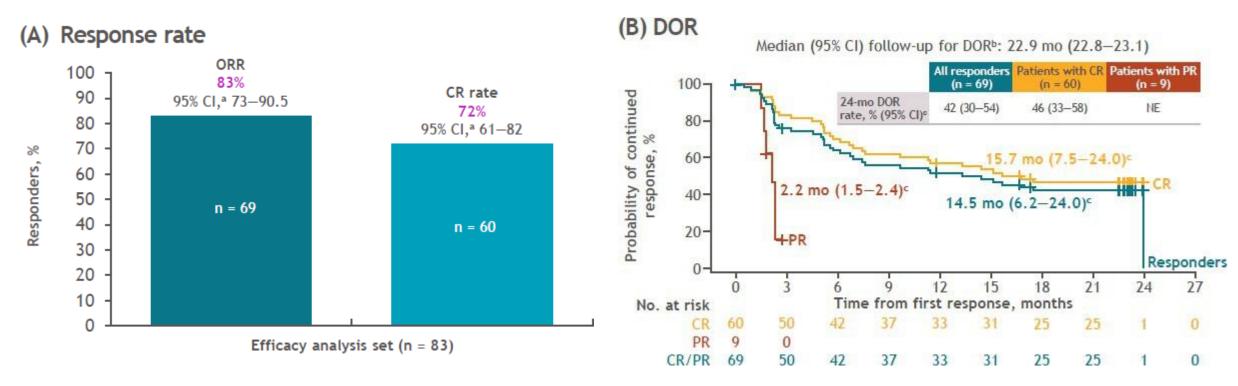


 Median investigator-assessed PFS was 25.3 months (95% CI, 12.7-46.6; N=68) and 54-month PFS rate was 32% (95% CI, 20.0-44.2) in Cohort 1

Real-World Outcomes of Brexu-cel in Patients with RRMCL: A Systematic Literature Review and Meta-Analysis



The estimated **median PFS** was **18.4** months The **1-year PFS** probability was **58.9%** The **2-year PFS** probability was **45.1%**



The estimated **median OS** was **40.6** months The **1-year OS** probability was **73.1%** The **2-year OS** probability was **59.5%**

Brexu-cel for RRMCL in Standard-of-Care Practice: Results From the US Lymphoma CAR T Consortium

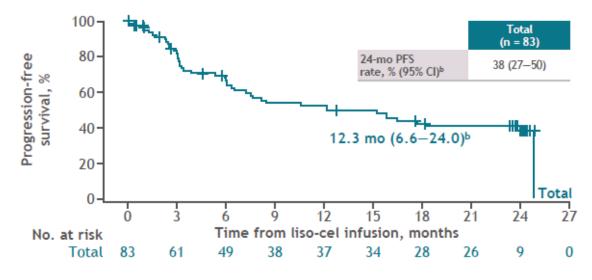
Liso-cel for MCL (Transcend NHL-001)

• Liso-cel continued to show clinically meaningful and durable disease control with high efficacy, including unchanged response rates, durable responses (Figure 3), and sustained PFS (Figure 4) and OS (Figure 5), consistent with primary analysis results¹

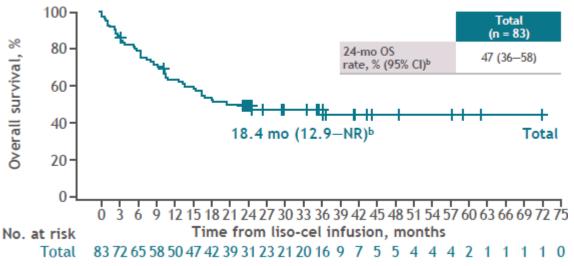
All percentages are rounded to whole numbers except those with ".5%". Data on KM curves are expressed as median (95% CI).

a Two-sided 95% exact Clopper-Pearson CIs; b Reverse KM was used to obtain median follow-up and its 95% CI; c KM method was used to obtain 2-sided 95% CIs. CI, confidence interval; KM, Kaplan-Meier; NE, not evaluable.

1. Wang M, et al. J Clin Oncol 2024;42:1146—1157.


Liso-cel for MCL (Transcend NHL-001)

Characteristic	Evaluable Patients (n)	Patients With CR (n)		CR Rate (95% CI
Age, years				
≥65	60	45	⊢	75.0 (62.1 to 85.3
<65	23	15		65.2 (42.7 to 83.6
≥75	16	11		68.8 (41.3 to 89.0
<75	67	49		73.1 (60.9 to 83.2
	0/	49		/3.1 (60.9 to 83.2
Sex				
Female	20	17		85.0 (62.1 to 96.8
Male	63	43	 	68.3 (55.3 to 79.4
Previous HSCT				
Yes	27	22	├	81.5 (61.9 to 93.7
No	56	38	<u> </u>	67.9 (54.0 to 79.
Secondary CNS lymphoma				
Yes	7	6	<u> </u>	85.7 (42.1 to 99.
No	, 76	54		71.1 (59.5 to 80.
Response to last therapy	70	54		71.1 (55.5 to 60.
	EO	20		GE E /E1 0 +- 77
Refractory	58	38		65.5 (51.9 to 77.
Relapsed	25	22		88.0 (68.8 to 97.
Chemotherapy response				
Refractory	24	13	├	54.2 (32.8 to 74.
Sensitive	59	47		79.7 (67.2 to 89.
Previous BTKi exposure				
Refractory to BTKi	45	29		64.4 (48.8 to 78.
Not refractory to BTKi	35	28		80.0 (63.1 to 91.
Ki-67 proliferation index	-	20		00.0 (00.1 10 0 1.
<30%	14	8		57.1 (28.9 to 82.
≥30%	62	4/		/5.8 (63.3 to 85.
Unknown	7	5		71.4 (29.0 to 96.
TP53 mutation status	/	5		/ 1.4 (29.0 to 96.
Yes	19	11		57.9 (33.5 to 79.
No	32	27		84.4 (67.2 to 94.
Not tested	29	20	├	69.0 (49.2 to 84.
Indeterminate	3	2	 	66.7 (9.4 to 99.2
Blastoid morphology				
Yes	27	17		63.0 (42.4 to 80.
No	45	37		82.2 (67.9 to 92.
Not tested	11	6		54.5 (23.4 to 83.
MIPI risk category		v		04.0 (20.4 to 00.
Low risk	34	28		82.4 (65.5 to 93.
Intermediate/high risk	49	32		65.3 (50.4 to 78.
	49	32		00.3 (00.4 10 78.
_DH	00			74.0 (55.4 : 55
≥ULN, U/L	39	28		71.8 (55.1 to 85.
<uln, l<="" td="" u=""><td>44</td><td>32</td><td>├</td><td>72.7 (57.2 to 85.</td></uln,>	44	32	├	72.7 (57.2 to 85.
SPD			i	
≥Median cm²	38	24	 	63.2 (46.0 to 78.
<iviedian cm<="" td=""><td>40</td><td>33</td><td></td><td>82.5 (67.2 to 92.</td></iviedian>	40	33		82.5 (67.2 to 92.
Bridging therapy				
Yes	54	38	 	70.4 (56.4 to 82.
No	29	22	 	75.9 (56.5 to 89.
		0	10 20 30 40 50 60 70 80 90 100	
			CR Rate (95% CI)	


ORR = 84% (27/32); CR = 59% (19/32)

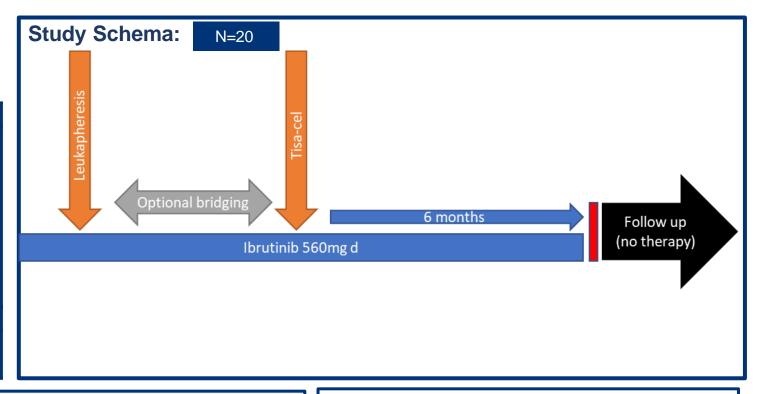
1% CRS (no G3-5), 9% G3 neurologic events (no G4-5)

Median (95% CI) follow-up for PFSa: 24.0 mo (23.7-24.0)

Median (95% CI) follow-up for OSa: 35.4 mo (24.6-36.4)

J Clin Oncol. 2024 Apr 1;42(10):1146-1157 Wang M, et al. ASTCT 2025. Poster number 240

TARMAC: Combination of time-limited ibrutinib and tisagenlecleucel in RR-MCL


STUDY OVERVIEW

Key inclusion criteria:

- MCL¹
 - Relapse after 1 line or
 - Insufficient response to induction²
- ≥18yo
- Radiographically assessable or bone marrow phase disease

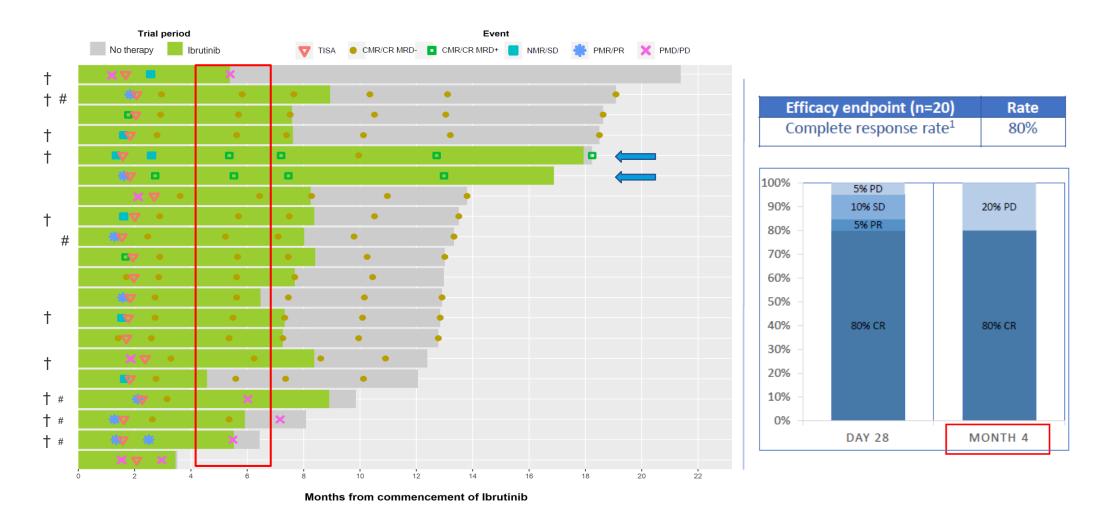
Key exclusion criteria:

- Prior allogeneic transplant
- Active CNS involvement

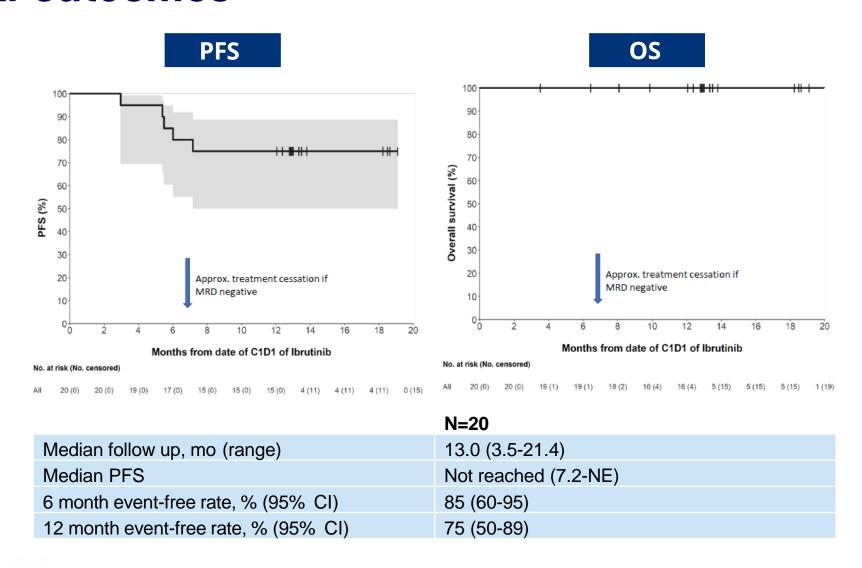
Primary endpoint: Complete response rate at 4 months post tisagenlecleucel³

Key secondary endpoints: Safety, objective response rate, progression free survival, duration of response, overall survival, subgroup analysis based on *TP53* status

Alternative hypothesis: CR rate of ≥40% at M4 **Null hypothesis:**


<u>Ibrutinib naïve:</u> CR rate of 9% at M4 and 20%

overall with ibrutinib


Ibrutinib exposed: CR rate of ~20% with

chemotherapy

TARMAC Primary endpoint – response at 4 months

TARMAC Survival outcomes

LV20.19 CAR T-Cells for Relapsed, Refractory Mantle Cell Lymphoma

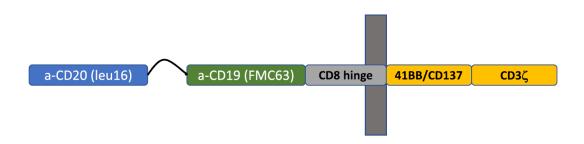
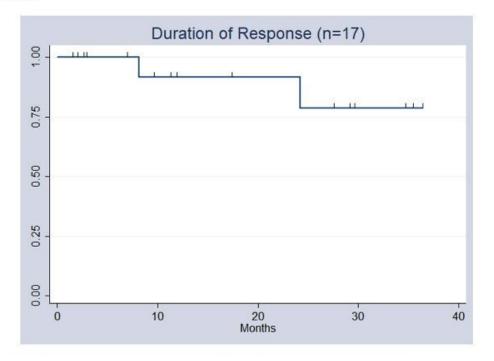
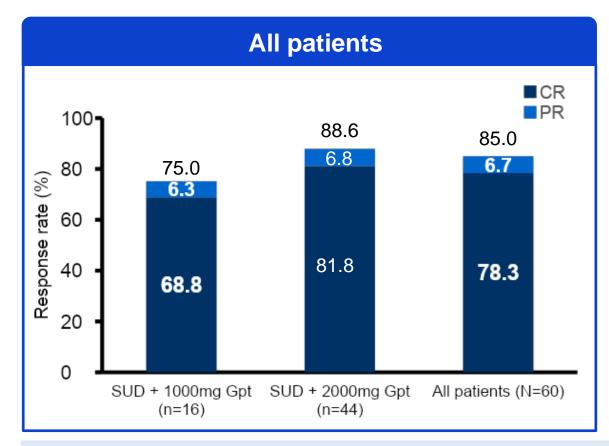



Table 1: Clinical characteristics of MCL patients receiving LV20.19 CAR T-cells


	MCL patients (n=17)
Median Age, years	63 (50-74)
Male % (n)	88% (15)
Prior auto-HCT % (n)	41% (7)
Prior allo-HCT % (n)	12% (2)
BTKi exposed % (n)	94% (16)
BTKi progressed % (n)	76% (13)
Non-covalent BTKi progressed % (n)	35% (6)
Median Prior Lines (including transplant)	4 (3-8)
Complex Cytogenetics	3 patients
p53 aberrations (not uniformly assessed)	3 patients with p53 deletion 4 patients with p53 somatic mutation

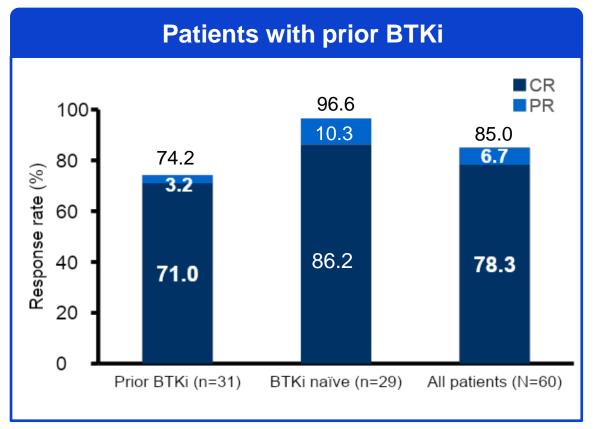

Grade 3-4 CRS in 1 (5%) patient
Grade 3-4 neurotoxicity in 3 (14%) patients.
ORR 82% with 64% CR rate
ORR 100% with 92% CR rate at RP2D

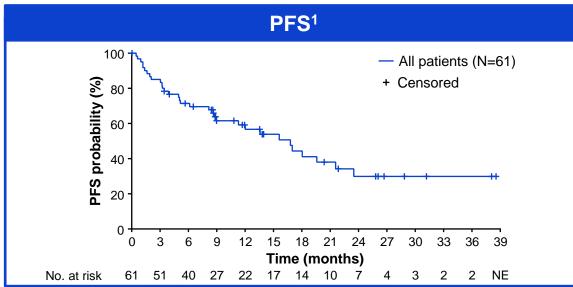
Figure 1

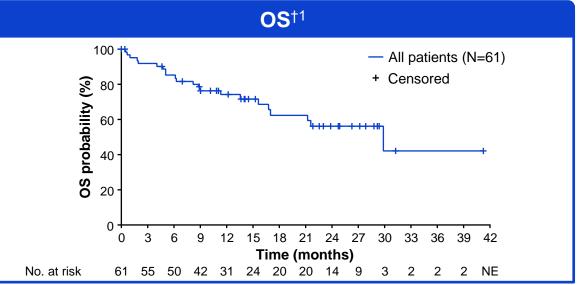
Glofitamab in RRMCL: Results From a Phase I/II Study

- Median time to first response among responders (n=51): 42 days (95% CI: 42.0–45.0)
- High response rates in the overall population and in both BTKi-naïve patients and those with prior BKTi therapy

Clinical cut-off date: September 04, 2023. Response rates shown for the efficacy-evaluable population.

1. Cheson BC, et al. J Clin Oncol 2014;20:3059-68;


BTKi, Burton's Tyrosine Kinase inhibitor; CI, confidence interval; CR, complete response; Gpt, obinutuzumab pretreatment. Philips T, et al. J Clin Oncol 2024; doi:10.1200/JCO.23.02470 (online ahead of print); PR, partial response; SUD, step-up dosing.

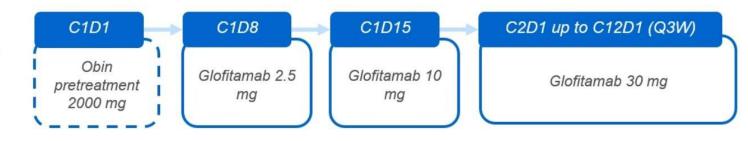

3. Philips T, et al. ASCO 2024; oral presentation (abstract #7008).

^{*}Investigator-assessed.

Glofitamab in RRMCL: Results From a Phase I/II Study

Outcomes	Prior BTKi	All patients	DOCR*
Outcomes	n=22	n=47	Patients with a CR (n=47) + Censored
Median DOCR, months (95% CI)	12.6 (5.4–NE)	15.4 (12.7–NE)	80 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
12-month DOCR rate, % (95% CI)		71.0 (56.8–85.2)	DOCR
Median PFS, months (95% CI)	8.6 (3.4–15.6)	16.8 (8.9–21.6)	20 -
Median OS, months (95% CI)	21.2 (9.0-NE)	29.9 (17.0-NE)	0 3 6 9 12 15 18 21 24 27 30 33 36 39 Time (months) No. at risk 47 41 33 25 19 12 9 7 6 3 2 2 1 NE

GLOBRYTE: A Phase III, Open-label, Multicenter Randomized Study Evaluating Glofitamab As A Single Agent Versus Investigator's Choice in Patients With R/R MCL

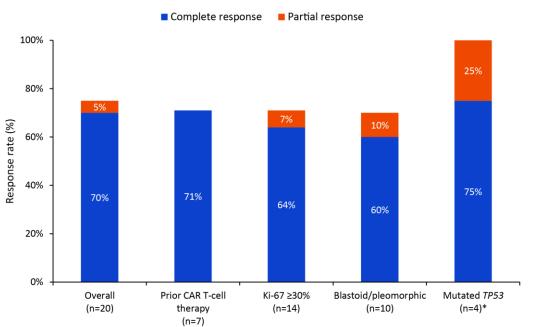

Key Inclusion Criteria

- Histologically confirmed MCL with documentation of either overexpression of cyclin D1 or the presence of t(11:14)
- Relapsed or refractory disease
- Prior therapy must have included a BTKi
- At least 1 bi-dimensionally measurable (1.5 cm) nodal lesion, or 1 bi-dimensionally measurable (1 cm³) extranodal lesion, as measured on computed tomography scan

R 1:1 N=182 R-Chemo or R2 (BR or R-Len)

Other Study Details

- Primary EP: PFS by IRC
- · Secondary EPs: ORR, CR, OS, PFS (INV), DOR, DOCR
- Exploratory EPs: QOL, PK/PD/ADAs, Biomarkers, Safety
- Stratification factors: 2L vs 3L+, outcome of last line of therapy (relapsed vs refractory)
- · Mandatory hospitalization after Dose 1
- Crossover to glofitamab permitted on confirmed progression



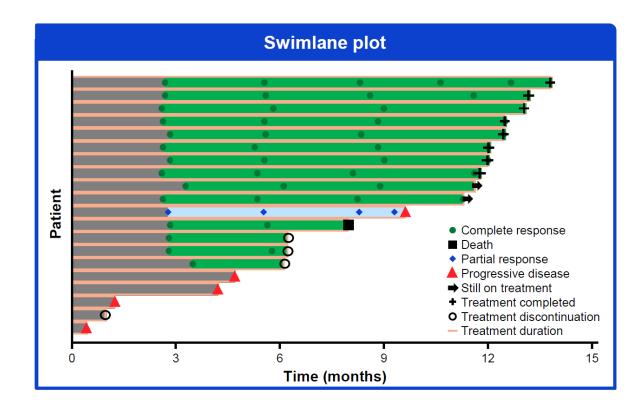
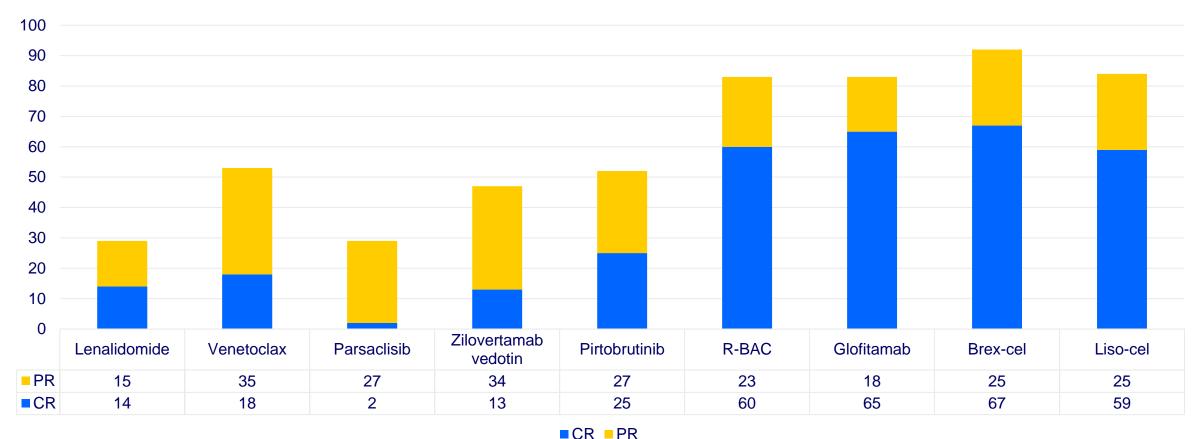

Mosunetuzumab + Polatuzumab vedotin Phase 1b/II for BTKi RRMCL

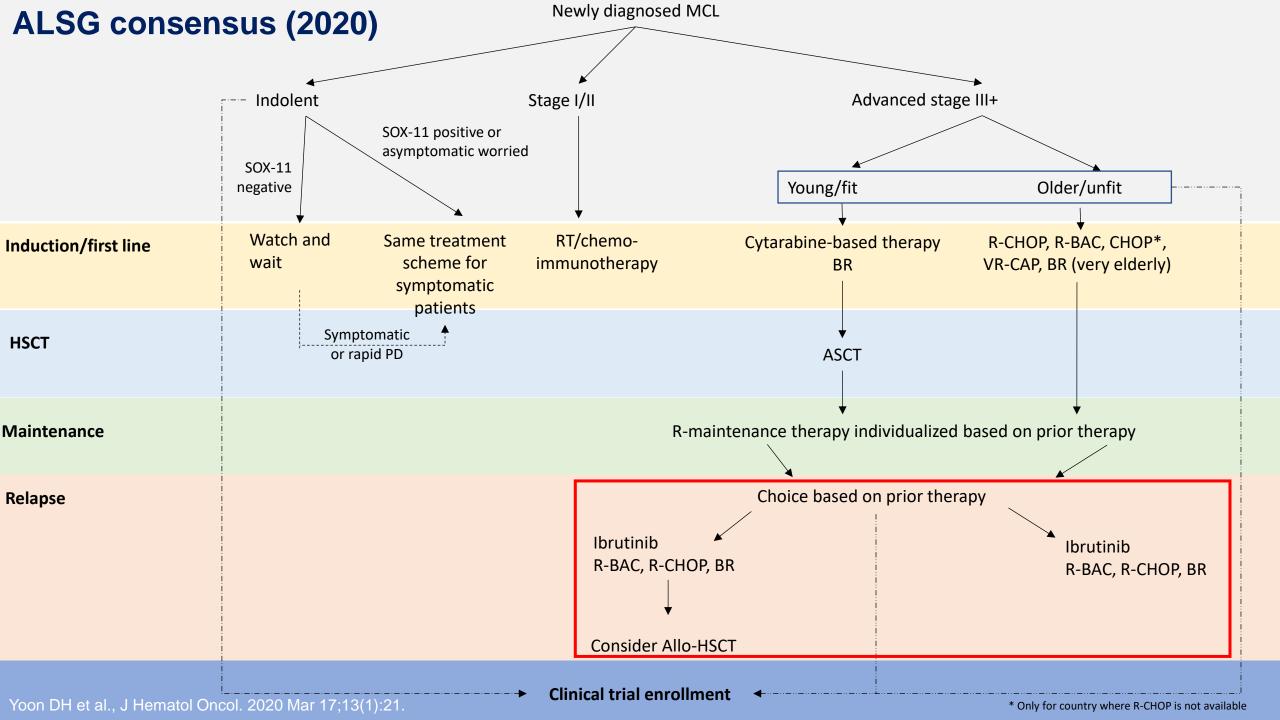
Figure: Best overall response rates in high-risk MCL subgroups

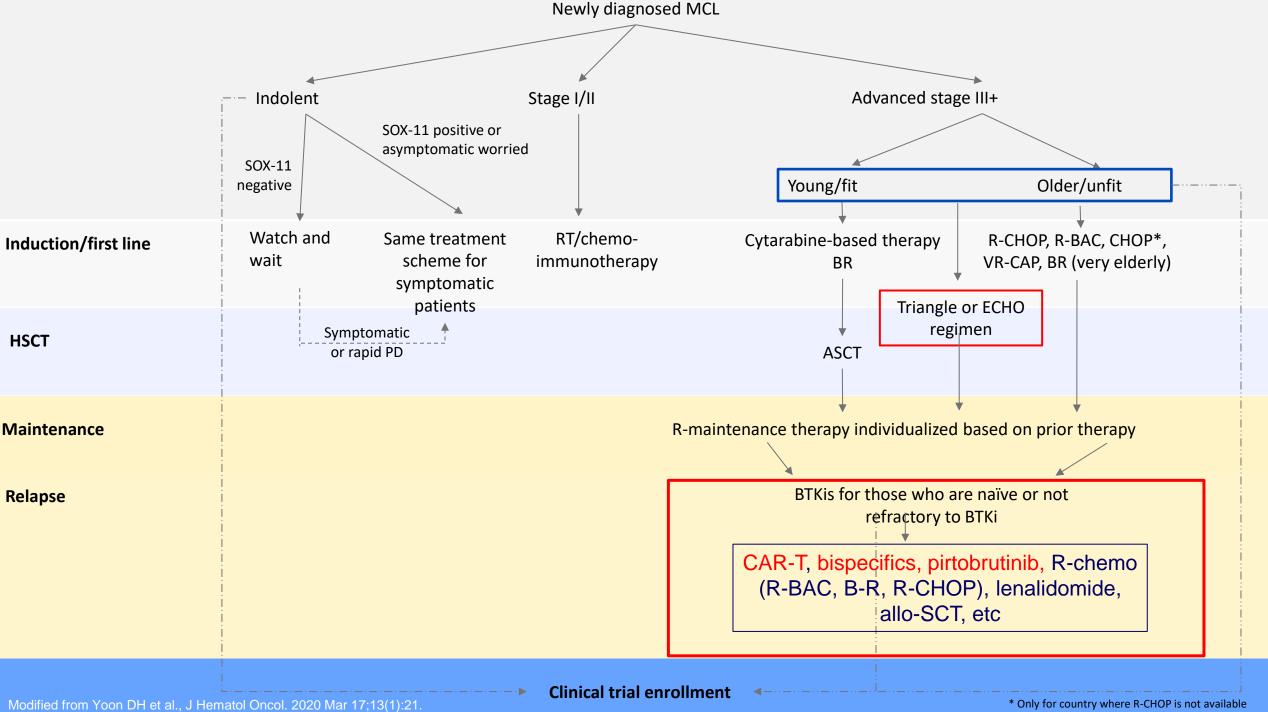

^{*}The *TP53* status of 10 patients was unknown or not done, therefore these patients were not included in this analysis.

CAR, chimeric antigen receptor; Ki, kinase inhibitor; MCL, mantle cell lymphoma; TP53, tumor protein 53

Median DoR: 13.3 mo (95% CI: 13.3-NE)

Overall response rates for therapeutics for R/R MCL after covalent BTKi




^{*} Data from each trial

Lenalidomide: Wang et al., J Hematol Oncol 2017;10(1):171; Venetoclax: Eyre T, et al. Haematologica. 2019 Feb;104(2):e68-e71; Parsaclisib, Zinzani et al., ASH 2020, abstract 2044; Pirtobrutinib, Wang et al, ASH 2021 abstract 381; Zilovertamab vedotin: Wang et al., ASH 2020, abstract 121; R-BAC, McCulloch et al., Br J Haematol. 2020 May;189(4):684-688); Glofitamab, Blood (2021) 138 (Supplement 1): 130; Brex-cel, Wang et al., N Engl J Med 2020;382:1331-42; Liso-cel, ASH 2020 abstract 118

Novel agents under active investigation for R/R MCL

Name	Target and mechanism
NX-2127, BGB-16673	BTK-targeting PROTACs
Epcoritamab	Bispecific antibody targeting CD20 and CD3; given subcutaneously
JNJ-80948543	Trispecific antibody targeting CD79b, CD20, and CD3
CART	CAR T-cells targeting CD19/CD20,130 CD79b,121 BAFF, SOX11, and ROR1. Efforts to improve the persistence of CART by modulating BCL2 and FOXO1 are being explored.
Sonrotoclax (BGB11417)	BCL2 antagonist
PRT-343 (NCT03886831)	PRMT5 inhibitor
LP-284135	DNA-damaging agent that induces double-stranded DNA breaks. It has elevated potency in cancer cells with homologous recombination repair defects.
KIN-8194	Dual BTK/HCK inhibitor
Luxeptinib (CG-806)137	Dual BTK/SYK inhibitor
TIGIT ab	Anti-TIGIT antibody
Miscellaneous	CDK inhibitors, MALT1, BAFF, ROR1

Summary

Treatment is evolving with the addition of novel therapeutics

- BTK inhibitors: most actively investigated agents for R/R MCL
 - Covalent BTKi: Ibrutinib + acalabrutinib, zanubrutinib → moving to the 1st-line therapy
 - Non-covalent BTKi: pirtobrutinib
- Venetoclax: moderate efficacy as a single agent
 - Novel combinations: eg., ibrutinib + venetoclax
- Bispecifics such as glofitamab
- CAR-Ts: Brexu-cel or liso-cel
- R-BAC: toxic but effective even after BTKi

Challenges

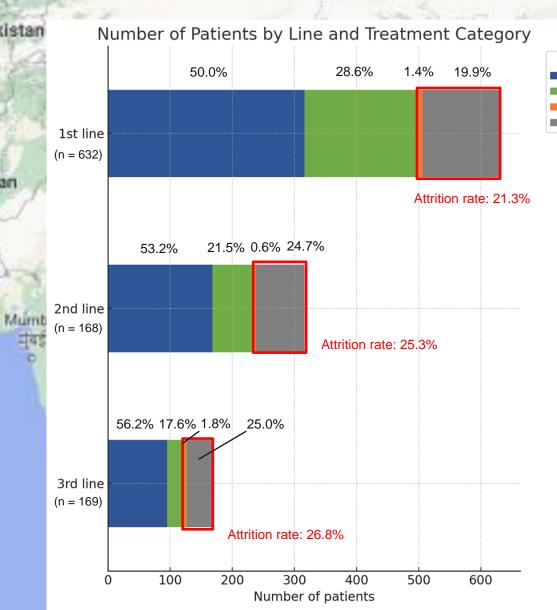
- Limited number of randomized trials to guide therapy
- Still limited options in our clinic

Real challenge for use = \$\$\$

- Pirtobrutinib: \$247,000 to \$260,000 USD per year
- CAR-Ts: Brexu-cel: \$410,000 USD, Liso-cel: \$447,227 USD
- Glofitamab: \$226,658-\$283,147 USD per patient

Attrition rate from AP MCL registry

Beting

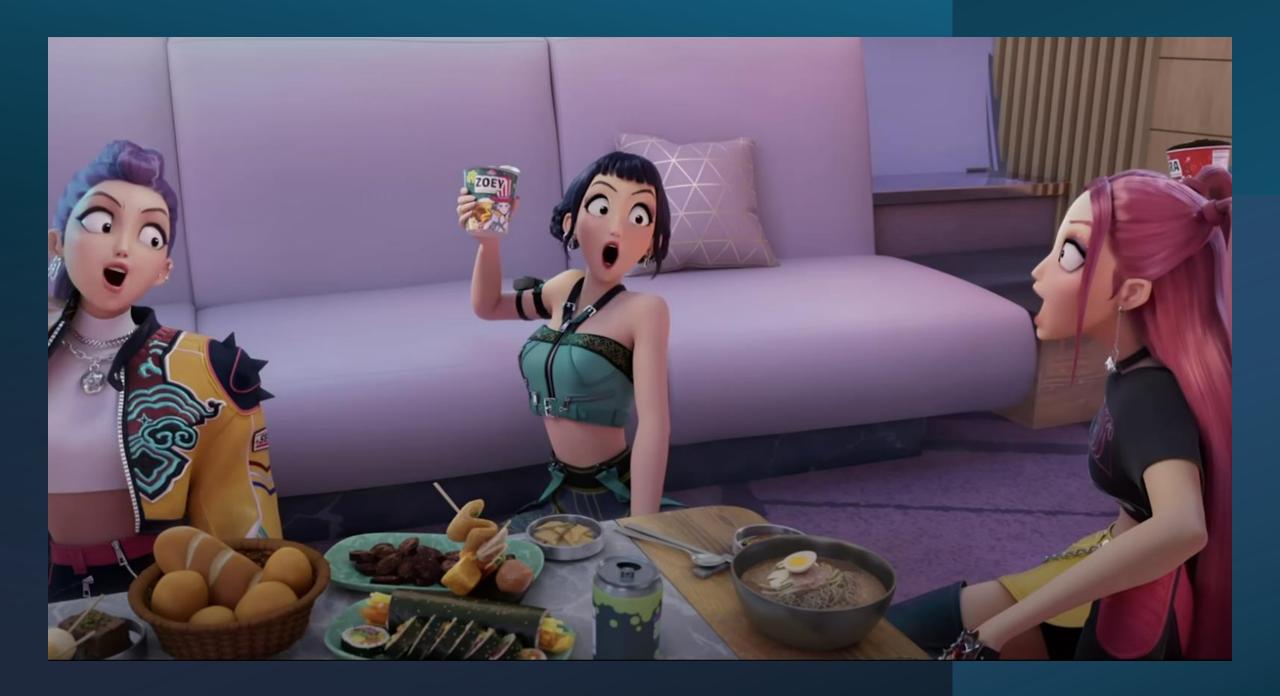

North Korea

istan Tajikistan

Afghanistan

Arabien See

Pakistan


The Eastern Breeze Symposium on Malignant Lymphoma

Celebrating 20 Years:

Korean Society of Hematology Lymphoma Working Party

October 30-31, 2026

Grand Walkerhill Seoul, Korea

